

SOUTHWEST BRANDON SECONDARY PLAN AREA TRAFFIC IMPACT STUDY

CITY OF BRANDON
FINAL REPORT | NOVEMBER 2022

C)

$\%$ BRANIDN

DISCLAIMER

This report was prepared by MORR Transportation Consulting Ltd. (MORR) for The City of Brandon (Client) in accordance with the project RFP and proposal. The evaluation and conclusions contained in this report have been prepared on the basis of conditions in evidence at the time of site inspections, within a defined scope of services, and on the basis of information provided to us by the Client and Client representative, and do not take into account any subsequent changes to those conditions.

In preparing this report we have relied in good faith upon representations, information and instructions provided by the Client and/or Client representative concerning the site. Accordingly, we cannot accept responsibility for any deficiency, misstatement or inaccuracy contained in the Report as a result of misstatements, omissions, misrepresentations, or other acts of the Client or other persons providing information relied on by us. We are entitled to rely on such representations, information and instructions and are not required to carry out investigations to determine the truth or accuracy of such representations, information and instructions. Any reliance on this document by any third party is strictly prohibited. We cannot accept responsibility for independent conclusions, interpretations, interpolations and/or decisions of the Client, or others who may come into possession of the Report, or any part thereof, which may be based on information contained in the Report. Any third party who uses the evaluation and conclusions contained in this report agrees that MORR shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document.

Report Prepared by:

Report Reviewed by:

[^0]i|Page

TRANSPORTATION CONSULTING

TABLE OF CONTENTS

Executive Summary v
1 Introduction 1
1.1 Purpose and Scope 2
1.2 Report Outline 4
2 Context 6
2.1 Location 6
2.2 Development Parameters 7
2.3 Policy Context 8
2.4 Transportation Infrastructure 12
2.5 Nearby Developments 18
2.6 Analysis Scenarios 19
3 Travel Demand 20
3.1 Existing Travel Demand 20
3.2 Future Background Travel Demand 27
3.3 Development Generated Travel Demand. 27
3.4 Post-Development Travel Demand 35
4 Functional Requirements 38
4.1 Recommendations 39
4.2 Network Structure Review 41
4.3 Safe Systems Review. 55
4.4 Transit Review 68
4.5 Emergency Access and Truck Route Review 70
4.6 Traffic Operations Analysis 71
4.7 Traffic Signal Warrant Analysis 85
4.8 Pedestrian Crossing Control Analysis. 87
4.9 Sensitivity Analysis 89
5 Concept Design 102
6 Conclusions and Recommendations 112
ii \| Page

SOUTHWEST BRANDON SECONDARY PLAN AREA

TRAFFIC IMPACT STUDY
Table of Contents

LIST OF FIGURES

Figure 1: Secondary Plan Area 1
Figure 2: TIS Study Area 2
Figure 3: Regional Context 6
Figure 4: Active Transportation Network 17
Figure 5: Nearby Developments 18
Figure 6: Raw Data Volumes 24
Figure 7: 2022 Background 25
Figure 8: Analysis Zones 34
Figure 9: Development Generated Traffic Volumes 36
Figure 10: 2052 Post Development 37
Figure 11: Recommended Transportation Infrastructure 41
Figure 12: Transportation and Land Use As Proposed in Secondary Plan 42
Figure 13: Active Transportation Desire Lines 43
Figure 14: Potential Additions to the Active Transportation Network 44
Figure 15: Collector Street Coverage 46
Figure 16: Active Transportation Network Coverage 47
Figure 17: Existing Background Traffic Volumes 49
Figure 18: Forecast Full Build Out Development Generated Daily Traffic Volumes 50
Figure 19: Forecast 2052 Post-Development Daily Traffic Volumes 51
Figure 20: Network Structure Recommendations 54
Figure 21: FHWA Safe Systems Principles 55
Figure 22: Sustainable Safety Safe Speeds by Conflict Type. 57
Figure 23: Shortcutting to Avoid Congestion 59
Figure 24: Collector Streets with Long Straight Alignments 61
Figure 25: Curb Extension in Brandon (Source: Google Streetview) 63
Figure 26: Speed Cushion in Ottawa (Source: City of Ottawa) 64
Figure 27: Raised Crossing in Winnipeg (Source: Google Streetview) 65
Figure 28: Recommended Traffic Calming Treatments 67
Figure 29: Existing and Proposed Transit Service 69
Figure 30: Emergency Access Connections 71
Figure 31: Existing Intersection Configurations 74
Figure 32: Annex Land Signalized Intersection Configurations 84
Figure 33: Pedestrian Crossing Control Analysis Locations 88
Figure 34: Recommended Infrastructure Triggered in 2022 95
Figure 35: Recommended Infrastructure Triggered in 2027 96
Figure 36: Recommended Infrastructure Triggered in 2032 97
Figure 37: Recommended Infrastructure Triggered in 2037 98
Figure 38: Recommended Infrastructure Triggered in 2042 99
iii | P a g e

TRANSPQRTATION CONSULTING
Figure 39: Design Sketch - Proposed East-West Collector at Lakeview Drive (left) and at $34^{\text {th }}$ Street (Right)105
Figure 40: Design Sketch - $34^{\text {th }}$ Street at Aberdeen Avenue 106
Figure 41: Design Sketch - $34^{\text {th }}$ Street at Patricia Avenue (Left), $26^{\text {th }}$ Street at Maryland Avenue (Right) . 107
Figure 42: Design Sketch $-26^{\text {th }}$ Street at Proposed East-West Collector (Left) and at Patricia Avenue (Right)108
Figure 43: Design Sketch - Patricia Avenue at Annex Lands Commercial Access 109
Figure 44: Design Sketch - 18th Street at Patricia Avenue 110
Figure 45: Design Sketch - $18^{\text {th }}$ STreet at Annex Lands Commercial Access 111
LIST OF TABLES
Table 1: SPA Development Parameters 7
Table 2: Arterial Road Characteristics. 13
Table 3: Collector Street Characteristics 14
Table 4: Peak Hour Factors. 26
Table 5: Low-Density Residential Vehicle Trip Generation Rates 28
Table 6: Vehicle Trip Generation Estimates 29
Table 7: Walking, Cycling, and Transit Trip Generation Rates 31
Table 8: Vehicle Trip Directional Distribution. 32
Table 9: Traffic operations Analysis Results - Brookwood North 76
Table 10: Traffic operations Analysis Results - Brookwood South 77
Table 11: Traffic operations Analysis Results - Bellafield 79
Table 12: Traffic operations Analysis Results - Annex Lands 81
Table 13: Traffic Signal Warrant Analysis Results 86
Table 14: Triggers - Collector Streets, Arterial Roads, and External Connections 92
Table 15: Triggers - Intersections and Traffic Calming 93
Table 16: Triggers - Active Transportation and Transit. 94

LIST OF APPENDICES

Appendix A Level of Service Definitions
Appendix B Traffic Data and Calculations
Appendix C Synchro Traffic Analysis Reports - Base Scenarios
Appendix D Traffic Signal Warrant Analysis Spreadsheets
Appendix E Sensitivity Analysis Forecasts and Results

EXECUTIVE SUMMARY

This Traffic Impact Study (TIS) was prepared in support of the Southwest Brandon Secondary Plan Area (SPA). The purpose of the TIS was to identify the transportation infrastructure required to allow the SPA to develop as a primary growth centre, while limiting impacts on nearby existing neighbourhoods and integrating into the external transportation network.

The TIS study area included the SPA and the Brookwood North neighbourhood, and a portion of the Parkland Heights neighbourhood, from Durum Drive south to the Bellafield neighbourhood.

The TIS considered transportation infrastructure needs through the following perspectives:

- Street and active transportation network connectivity and coverage
- Street classification
- Active transportation facility types and crossing control
- Traffic operations performance
- Safe systems principles and traffic calming
- Transit service
- Emergency services access

This resulted in a list of recommendations for the study area. For each recommendation, the condition that would make the recommendation required was identified, along with a forecast horizon year for when that condition would occur. Recommendations were also tested for robustness against potential alternate future scenarios. Conceptual design geometry sketches were produced for recommended intersection treatments, including roundabouts and signalized intersections. The sketches included geometry for active transportation facilities, and estimated property acquisition requirements.

A Safe Systems approach was integral to development of the recommendations. The approach was used to identify potential safety issues in the study area, including issues related to incompatibility between traffic flow and neighbourhood functions, issues around understandability, and issues around speed. This led to recommendations for traffic calming treatments including curb extensions, speed cushions, and raised crossings. Those treatments can help to control vehicle speeds and make collector street environments more inviting to people on foot, cycling, or using transit.

SOUTHWEST BRANDON SECONDARY PLAN AREA

TRAFFIC IMPACT STUDY

1. Introduction

1 INTRODUCTION

The Southwest Brandon Secondary Plan Area (SPA) is intended to be a primary growth centre. The SPA will have a greater chance to be successful if the transportation system supports—rather than hinders—growth and development. Building too much transportation capacity is a misuse of resources that can lead to liveability and safety issues, while too little capacity would constrain development and could generate delay and a different slate of safety issues in the long term. Traffic Impact Studies (TIS) have been completed for specific neighbourhoods within the SPA over time; however, this TIS was requested by the City of Brandon to bring all the pieces together and provide a holistic assessment of full development of the entire growth area and group needs in five-year increments.

As of October 2022, the City administration had recommended the SPA be expanded to include recently annexed lands south of Patricia Avenue and west of $18^{\text {th }}$ Street. Figure 1 shows the original SPA from 2014, and the updated boundary. Note that as of October 2022 the boundary change had not yet been approved by City Council.

FIGURE 1: SECONDARY PLAN AREA

1.1 Purpose and Scope

The purpose of the TIS was to identify the transportation infrastructure required to allow the SPA to develop as a primary growth centre. The TIS also considered how development traffic could impact nearby neighbourhoods, how SPA development could integrate into the wider area, and how traffic concerns from nearby neighbourhoods (see the end of Section 2.3) could impact the planning of the SPA. As such, the study area included the SPA and adjacent lands, including Brookwood North and Parkdale Heights from Bellafield to Durum Drive. The study focused on arterial road and collector street segments and intersections

The TIS study area is shown on Figure 2. The figure shows proposed collector street alignments originally from the Secondary Plan, and updated based on more recent development plans. The figure also shows the study intersections, which were subject to detailed review and analysis.

FIGURE 2: TIS STUDY AREA

The study intersections included:

- Richmond Avenue at Brookwood Drive
- Richmond Avenue at $34^{\text {th }}$ Street
- $34^{\text {th }}$ Street at Lakeview Drive/Aberdeen Avenue
- $34^{\text {th }}$ Street at Patricia Avenue
- Patricia Avenue at $18^{\text {th }}$ Street
- $26^{\text {th }}$ Street at Maryland Avenue
- $26^{\text {th }}$ Street at Durum

Drive/Hummingbird Lane

- South extension of Lakeview Drive at a new east-west collector street north of Patricia Avenue
- New east-west collector street at $34^{\text {th }}$ Street
- New east-west collector street at a south extension of $26^{\text {th }}$ Street
- South extension of Lakeview Drive at Patricia Avenue
- South extension of $26^{\text {th }}$ Street at Patricia Avenue
- Patricia Avenue at Brentwood Trace (west intersection)
- Patricia Avenue at a new commercial access west of $18^{\text {th }}$ Street
- $18^{\text {th }}$ Street at a new commercial access south of Patricia Avenue

The study considered full build out conditions at a 2052 horizon, as well as interim conditions in 5 -year intervals between 2022 and 2052.

Analyses and reviews included consideration of the street and active transportation (AT) networks at a segment or "link" level, detailed assessments of intersection performance, and sensitivity analyses. Linklevel reviews included:

- Network Structure Review to assess street and path network connectivity and coverage, including connections to developed and undeveloped external areas.
- Safe Systems Review to identify any potential safety issues arising from how the street and AT networks are structured. This included consideration for the functions served by each streetwith identification of any incompatible mix of functions-and identification of potential need for traffic calming, along with potential treatments to address those needs.
- Transit Review to identify potential routing for future transit service, and potential stop locations.
- Emergency Access, Truck Route, and Constructability Review to review requirements for emergency vehicle access, truck routes, and construction routes, and to recommend any changes to the street networks to provide the required level of access. This also included consideration for temporary construction accesses.

Detailed intersection performance analyses included:

- Traffic Operations Analyses to identify traffic operations performance in terms of delay, level of service, volume to capacity, and queue lengths. This was used to identify requirements for intersection traffic control and lane configurations.
- Traffic Signal Warrant Analyses to identify intersections where conflicting traffic volumes are too high to be adequately serviced by stop control, and traffic signal or roundabout control would be required.
- Pedestrian Crossing Control Analyses to identify requirements for pedestrian crossing control devices where paths met streets at mid-block.

Sensitivity analyses included consideration for:

- Impacts of changing the location of a proposed Brandon School Division school between one of two potential locations.
- Need for treatments at the interim horizon years. This allowed the study team to identify the level of development that would trigger the need for any recommended treatments.
- Funding considerations, including the extent to which recommended treatments address issues related to development, background issues, or a combination of the two.
- Treatment robustness against changes in traffic volumes representing different levels of development, including a scenario representing development at the higher end of potential demand forecast by the City of Brandon.

In addition to the reviews and analyses noted above, the study team conducted a site visit in July 2022. Findings from the site visit-including notes about signage-are presented where relevant, particularly in Sections 2.3.

The analyses and reviews allowed the study team to identify required transportation infrastructure at the ultimate 2052 horizon and at the interim horizons. Recommended treatments were developed to concept design level of detail, outlining street centrelines and edges of pavement, sidewalk and path edges, and high-level right of way requirements.

1.2 Report Outline

The remainder of the report includes the following sections:

- Context outlines elements of the study area, transportation network, and policy environment that influence considerations around transportation infrastructure.
- Travel Demand presents data, calculations, and assumptions used to quantify travel demand in the study area.
- Functional Requirements details the results of the analyses and reviews conducted to identify required treatments at intersections and crossings, and on street segments in the study area. This
section also outlined findings from sensitivity analyses to test the robustness of the recommended treatments to different traffic conditions.
- Concept Design presents concept design geometry for the functional requirements, along with info on whether background conditions or development growth is the main driver for each treatment.
- Conclusions and Recommendations summarizes the study findings and recommendations.

2 CONTEXT

2.1 Location

The Southwest Brandon Secondary Plan Area (SPA) includes undeveloped areas south of Richmond Avenue, west of $18^{\text {th }}$ Street, and north and east of the City of Brandon boundary. Note that after the Secondary Plan document was approved by City Council, the City of Brandon annexed lands south of Patricia Avenue and west of $18^{\text {th }}$ Street. The City of Brandon thus advised MORR to consider those lands as part of the SPA for the purposes of the TIS.

Figure 3 shows the SPA relative to the rest of Brandon.

FIGURE 3: REGIONAL CONTEXT

As of September 2022, land use within the SPA were largely agricultural, with some new residential development east of $34^{\text {th }}$ Street, near Maryland Avenue. The SPA also includes a school, Christian Heritage School, south of Maryland Avenue and east of $26^{\text {th }}$ Street.

Most development adjacent to the SPA was low density residential, with highway commercial east of the SPA along $18^{\text {th }}$ Street and big box commercial northeast of the SPA along Richmond Avenue and $18^{\text {th }}$ Street. Linden Lanes School and Meadows School are located near the SPA, to the northeast.

2.2 Development Parameters

The City of Brandon provided estimates on the land uses that would be developed in the SPA, in both a base case-representing the City's assessment of likely development—and a "maximum case" representing the City's assessment of the maximum development potential. Table 1 shows the land use types and quantities for each scenario.

TABLE 1: SPA DEVELOPMENT PARAMETERS

	Base Case Development Quantity	Maximum Development Quantity
Type	$1,083 \mathrm{du}$	$1,123 \mathrm{du}$
Single Family Detached Homes	596 du	618 du
Semi-Detached Units/Townhouses	$1,562 \mathrm{du}$	$1,619 \mathrm{du}$
Apartments	250 students	250 students
Brandon School District School	250 students	250 students
Division Scolaire Franco-Manitobaine School	60 childcare	60 childcare
Neighbourhood Commercial	$38,000 \mathrm{ft}^{2}$	$41,000 \mathrm{ft}^{2}$
Big Box Commercial	$640,000 \mathrm{ft}^{2}$	$699,000 \mathrm{ft}^{2}$

du: Dwelling Units
In the maximum development scenario, the residential uses are developed with 4% more units than the base scenario, and the commercial uses are developed with 9\% more units than the base scenario.

Note that in this TIS, school traffic was considered as it pertained to operations at the study intersections. The TIS assumed that school site planning would include appropriate provisions for drop-off and pick-up to avoid creating issues on adjacent streets. Future increases in student counts would likely have a greater impact on operations internal to the school sites than on nearby intersection performance.

Vehicular access to the development in the SPA is to be provided via the collector streets shown on Figure 2 , with intersections on $34^{\text {th }}$ Street, $18^{\text {th }}$ Street, and Patricia Avenue, and extensions of Lakeview Drive and $26^{\text {th }}$ Street. Active transportation connections are shown in Section 2.4.3.

2.3 Policy Context

The following points outline the policy documents and other references relevant to the project. For each policy or reference, specific policies or directions relative to the TIS are listed, as well as takeaways on how the policies may apply to the TIS:

- The Southwest Brandon Secondary Plan was approved by Brandon City Council in 2014. The Plan sets the bounds of the SPA, overarching objectives for the area, and specific policies dictating how the area should develop. Relevant objectives and include:
- Creation of a multi-modal transportation system that allows for safe and efficient travel by means of walking, cycling, transit, and personal vehicle use.
- Cost-effective provision of transportation infrastructure

Specific policies relevant to the TIS include:

- The street network shall generally adhere to the street network shown on Figure 12 (Policy 4.1.1). The street network should allow for convenient vehicle circulation without compromising the safety and attractiveness of the pedestrian environment (Policy 4.4.3).
- Transport network development should align with the Access Management, Traffic Calming, and Smart Growth principles contained in the Brandon Area Road Network Development Plan (Policy 4.1.2).
- The transport network within the SPA should be integrated with the broader City transport network, including connections to future development areas beyond the SPA (Policy 4.1.3).
- Collector streets may include wider boulevards on one side to accommodate a multi-use trail (Policy 4.2.4). On streets with multi-use trails, properties fronting the street on the side with the trail should have driveways from the side or the rear of the property, to avoid creating conflict points on the multi-use trail (Policy 4.2.5).
- Transit routes should be located along arterial or collector streets (Policy 4.3.1). Transit stops should be located within 400 m of key destinations including higher density residential and mixed-use areas, and non-residential uses like commercial or community greenspace areas (Policy 4.3.2). A transit stop should be provided directly in front of a new school in the SPA (Policy 4.3.3).
- Driveways are not permitted on arterial streets, except for driveways to mixed-use areas (Policy 4.4.6). Collector streets should also have minimal driveway connections (Policy 4.4.7).
- Traffic calming treatments can be considered on streets of all classifications (Policy 4.4.9). Traffic calming is a higher priority on collector streets and local streets.

The Secondary Plan also includes typical cross-sections for arterial, collector, and local streets. However, the study team understood that the cross-sections are currently under review as part of the ongoing Municipal Servicing Standards project. The study team thus identified functional requirements for different street types (see Section 4) but did not comment on overall right-of-way widths, at the direction of the City of Brandon. City of Brandon staff indicated that they would be responsible for integrating the findings from the TIS with the outcomes from the Municipal Servicing Standards. Other policies were considered in the identification of functional requirements (see Section 4) and the concept design (see Section 5).

As of October 2022, the Secondary Plan was being revised to include the annex lands south of Patricia Avenue and west of $18^{\text {th }}$ Street, as shown on Figure 1.

- The Brandon Area Road Network Development Plan (BARNDP, 2007) developed a prioritized infrastructure investment plan for highways, roads, and streets within Brandon and the surrounding area. The BARNDP included a review of current conditions, a public consultation program, development and employment of a traffic forecasting model, an origin-destination study, and identification of general strategies and specific infrastructure needs at the link level (for example, twinning $18^{\text {th }}$ Street from PTH 110 to Maryland Avenue). The Plan also included a Traffic Impact Study Policy that remained in effect as of October 2022.

Discussion of general strategies in the BARNDP includes:

- Discussion on types of traffic calming treatments, with pros and cons for each and example warrant thresholds from other jurisdictions.
- Outline of access management goals (generally reducing access points on arterial streets and roads) and specific techniques (development of frontage roads, shared access, etc.) to achieve those goals.
- Principles of Smart Growth as defined by the United States Environmental Protection Agency (EPA). With respect to transportation, the principles largely have to do with providing good alternatives to walking, in large part via reducing the distances between origins and destinations by mixing land uses.
- Comparison of alternative funding options, including impact assessments, incremental tax financing, user fees, and public-private partnerships.

The study team considered the general directions from the BARNDP in the identification of functional requirements (see Section 4) and the concept designs (see Section 5). However, traffic calming considerations were based largely on more up to date references like the Transportation Association of Canada (TAC) Canadian Guide to Traffic Calming, from 2018.

In 2017, the BARNDP was updated to include analysis on the need for a potential extension of Maryland Avenue from Marquis Drive to $34^{\text {th }}$ Street. The analysis found that there was no need for that extension for system capacity reasons, although the extension could be considered
network connectivity and development access. Considerations for the extension are discussed in Section 4.9.3 of this TIS.

- The Brandon and Area Planning District Development Plan (2013) laid out planning directives for the now-defunct Brandon and Area Planning District. The Development Plan included policies for the transportation system, aligned to objectives around energy efficient transport, a logical street hierarchy, access management, and safe movement of dangerous goods.

The transportation policies in the Development Plan are largely present in the Secondary Plan, and do not impose any new requirements on this TIS.

- The Brandon and Area Planning District Fringe Area Growth Strategy (2012) set out policies specific to the areas near the limits of the City of Brandon. The Fringe Area Growth Strategy considered where Brandon's boundaries should expand to accommodate future growth, sustainable development patterns, and the costs related to those developments. Policies relevant to transportation are largely taken from the Development Plan, with emphasis on locating higherdensity development near transit stops. Those policies were already considered in the Development Plan and the Secondary Plan, and thus they did not impose any new requirements on this TIS.

The Fringe Area Growth Strategy also includes population growth forecasts and estimates of land required to accommodate that growth. Those forecasts were an input to the City's work that determined the development parameters in Table 1.

- The City of Brandon Development Charge Background Study (2017) considered different means for the City of Brandon to recover costs associated with expanding City infrastructure to accommodate growth. The study included recommendations for development charges and policies. The study included a list of transportation projects eligible for development charge funding, with estimated costs for each project.

Projects relevant to this TIS include:

- Twinning Richmond Avenue between $26^{\text {th }}$ Street and $34^{\text {th }}$ Street
- Constructing an extension of Maryland Avenue from $26^{\text {th }}$ Street to $34^{\text {th }}$ Street
- This has since been revised to extend from $26^{\text {th }}$ Street to Marquis Crescent
- Upgrading $34^{\text {th }}$ Street from Park Avenue (north of Richmond Avenue) to Patricia Avenue
- Developing Patricia Avenue as a two-lane undivided urban arterial street from $1^{\text {st }}$ Street (east of $18^{\text {th }}$ Street) to $38^{\text {th }}$ Street (west of $34^{\text {th }}$ Street).
- Upgrading $18^{\text {th }}$ Street to an arterial street standard from Richmond Avenue to south of Patricia Avenue.
- This has since been revised to begin at Maryland Avenue - rather than Richmond Avenue-and proceed south to Patricia Avenue.
- Roundabouts at $34^{\text {th }}$ Street and Maryland Avenue (since removed from the plan), $26^{\text {th }}$ Street and Maryland Avenue, $34^{\text {th }}$ Street and Patricia Avenue, and Patricia Avenue and $18^{\text {th }}$ Street.
- This has since been revised to include a roundabout at $34^{\text {th }}$ Street and the Brookwood/Bellafield Collector street, and a roundabout or traffic signals at $34^{\text {th }}$ Street and Aberdeen Avenue.

As of October 2022, the Development Charge By-law and rates were under review and subject to Council approval.

- The Brandon City Plan process was ongoing as of October 2022, with the first phase of community engagement completed in May 2022. Work to date on the City Plan identified three focus areas, including "Brandon as a Moving City", emphasizing a proactive, preventative approach to traffic safety. Feedback from community group meetings indicated that there was concern around poor public transit service and limited transportation options. Those findings accord well with the priorities for transportation options and transit-oriented development (in the sense of locating higher density development near transit service) in the Secondary Plan and the City of Brandon Development Charge Background Study.
- The Traffic Signal Coordination Study in the City of Brandon (2015) involved development of a traffic analysis model to identify modifications to traffic signal timing, to provide safer and more efficient traffic operations, with an emphasis on overall system performance, rather than focusing on isolated intersections. The study considered all of the 57 signalized intersections in the City of Brandon as of 2015. There are no signalized intersections in the TIS study area, although the Traffic Signal Coordination Study found that the intersection of $18^{\text {th }}$ Street and Patricia Avenue could require traffic signals in the future. The study team considered signals as a possible modification to that intersection, in the identification of functional requirements in Section 4.
- Traffic Impact Studies (TIS) for the Bellafield (2015) and Brookwood South (2015) neighbourhoods, which encompass most of the SPA. The TISs considered intersections on Richmond Avenue, Maryland Avenue, Patricia Avenue, $34^{\text {th }}$ Street, $26^{\text {th }}$ Street, and $18^{\text {th }}$ Street. The TISs included development traffic forecasts based on proposed unit counts, existing traffic counts, and intersection performance analysis. The performance analyses found that existing intersection configurations were generally sufficient to accommodate the new traffic from the developments, although several intersections (Richmond Avenue and $18^{\text {th }}$ Street, $34^{\text {th }}$ Street and Aberdeen Avenue) were forecast to be at or nearing capacity once the developments were fully built out.

The study team used the trip generation forecasts and performance analysis findings from the TISs as a reference and comparison for this TIS.

- A Traffic Impact Study for the development of the Annex Lands, west of $18^{\text {th }}$ Street and south of Patricia Avenue. Like the other TISs, the study included forecasts of development traffic and performance analysis. As of October 2022 the study was in draft form, and its conclusions were
not available to the study. However, the study team was provided with information regarding trip generation, internal capture, and pass-by trip rates. That data is noted in Section 3.3.
- A Traffic Analysis and Geometric Reviewfor the intersection of $26^{\text {th }}$ Street and Maryland Avenue (2021). The review used traffic counts from 2021 and development traffic forecasts from the Bellafield TIS, and conducted analyses of intersection performance with various intersection configurations. The analysis found that the intersection should have a four-way stop controlled configuration with single lane approaches except for the northbound approach, which should also include a right-turn lane. The geometric review considered various options for developing the intersection geometry.

The study team used the Analysis and Review results as a check on findings from this TIS.
In addition to the policy documents and studies listed above, the study team reviewed Brandon City Council minutes and found that there were concerns from the community regarding traffic speeds on Durum Drive, just north of the TIS study area. The minutes indicated that the City of Brandon was conducting a trial of a $40 \mathrm{~km} / \mathrm{h}$ speed limit through 2022. City of Brandon staff indicated that the wide pavement on Durum Drive (approximately 12 m wide) and alignment as a connection from Lakeview Drive to Maryland Drive made Durum Drive an effective short-cut route. The study team considered those factors in the review of the collector street network, detailed in Section 4.

2.4 Transportation Infrastructure

This section outlines the study team's understanding of the study area arterial roads and collector streets, truck route designations, active transportation infrastructure, and transit infrastructure and service. This section includes discussion on both existing infrastructure and planned future infrastructure.

2.4.1 Roads and Streets

Table 2 shows the characteristics of existing arterial roads in the study area.

TABLE 2: ARTERIAL ROAD CHARACTERISTICS

Name	Posted Speed Limit in Study Area	Cross- Section in Study Area	Road Surface Type
$34^{\text {th }}$ Street	$60 \mathrm{~km} / \mathrm{h}$	Rural two-Lane Undivided	Pavement
$26^{\text {th }}$ Street	$50 \mathrm{~km} / \mathrm{h}$	Rural two-Lane Undivided	Pavement North of Maryland Avenue, Aggregate South of Maryland Avenue
$18^{\text {th }}$ Street	$80 \mathrm{~km} / \mathrm{h}$	Rural two-Lane Undivided	Pavement
Richmond Avenue	$60 \mathrm{~km} / \mathrm{h}$	Rural two-Lane Undivided	Pavement
Patricia Avenue	$50 \mathrm{~km} / \mathrm{h}$ ($18^{\text {th }}$ Street to Brentwood Trace), $60 \mathrm{~km} / \mathrm{h}$ (Brentwood Trace to $34^{\text {th }}$ Street), $90 \mathrm{~km} / \mathrm{h}$ (west of $34^{\text {th }}$ Street)	Rural two-Lane Undivided	Pavement from Brentwood Trace to $18^{\text {th }}$ Street, Aggregate west of Brentwood Trace

$34^{\text {th }}$ Street, $26^{\text {th }}$ Street, and $18^{\text {th }}$ Street are arterial roads on north-south alignments, at 800 m spacing. $18^{\text {th }}$ Street has the longest extent, continuing south of Brandon as Provincial Trunk Highway (PTH) 10, and north of the Assiniboine River to PTH 1. The other streets extend for approximately 2.7 km north of the study area. Richmond Avenue and Patricia Avenue run on east-west alignments at 1.6 km spacing. Both streets continue west of Brandon and continue east to PTH 110. The arterial roads are all paved in the study area, except for Patricia Avenue west of Brentwood Trace to the west limit of the study area, and $26^{\text {th }}$ Street south of Maryland Avenue. All the arterial roads have straight alignments with no curves in the study area; however, $26^{\text {th }}$ Street has a staggered alignment at Maryland Avenue, with the segment south of Maryland Avenue offset approximately 25 m to the west of the segment north of Maryland Avenue. The southerly section of 26th provides access to Christian Heritage School and continues further south to an informal connection to the Brentwood Village neighbourhood. The conceptual collector street network from the Secondary Plan includes a realignment of $26^{\text {th }}$ street to remove the staggered intersections on Maryland Avenue and to formalize the connection to Brentwood Village.

In the study area each of the roads has a rural, two-lane undivided cross-section, with adjacent lands backing on to the roads, with the except of some low-density residential uses fronting on the east side of $34^{\text {th }}$ Street south of Aberdeen Avenue and on the east side of $26^{\text {th }}$ Street north of Durum Drive. In those areas the fronting properties have direct access, but in the rest of the study area access is limited to street intersections typically spaced at least 400 m apart, but spaced as close as 30 m apart, on Patricia Avenue between $188^{\text {th }}$ Street and Currie Boulevard. The rural cross-sections include minimal shoulders (except for paved shoulders on $18^{\text {th }}$ Street) and thus there is little ability to park along any of these roads. However, parking restrictions are present on the approaches to the roundabout at $34^{\text {th }}$ Street and Richmond Avenue,
at the pedestrian crossings at $34^{\text {th }}$ Street and Aberdeen Avenue, and on the segment of $26^{\text {th }}$ Street with fronting residential lands, near Durum Drive.

The combination of straight alignments, limited interaction with adjacent land use, and limited intersections allow those roads to provide a significant mobility function. However, those factors may also allow comfortable travel at speeds above the posted speed limits, except on Patricia Avenue where the aggregate surface condition can help to limit vehicle speeds. Issues around speed are discussed in more detail in Section 4.3.

Table 3 shows the characteristics of the existing collector streets in the study area.
TABLE 3: COLLECTOR STREET CHARACTERISTICS

Name	Posted Speed Limit in Study Area	Cross-Section in Study Area	Road Surface Type
Brookwood Drive	$50 \mathrm{~km} / \mathrm{h}$	Urban two-lane undivided	Paved
Lakeview Drive	$50 \mathrm{~km} / \mathrm{h}$	Urban two-lane + parking lanes, divided	Paved
Aberdeen Avenue	$50 \mathrm{~km} / \mathrm{h}$	Urban two-lane undivided (with space for future four-lane section)	Paved
Durum Drive	$40 \mathrm{~km} / \mathrm{h}$ (temporary 2022 trial)	Urban two-lane undivided	Paved
Maryland Avenue	$50 \mathrm{~km} / \mathrm{h}$	Rural two-lane undivided	Paved

Brookwood Drive and Lakeview Drive are the main collector streets in the Brookwood North neighbourhood. Their alignments include curves and straight segments, such that continuous straight segments are limited to approximately 300 m long. Adjacent lands are developed with (mostly) fronting low-density residential uses with direct access and sidewalks on both sides, except for the west side of Brookwood Drive in a short section along a retention pond. Street intersections are provided at spacing ranging from 70 m to 210 m . Parking is permitted on both sides of both streets.

Aberdeen Avenue and Durum Drive are collector streets in the Parkdale Heights neighbourhood. Aberdeen Avenue serves to connect Durum Drive to $34^{\text {th }}$ Street, with a short extent of only 150 m between $34^{\text {th }}$ Street and a " T " intersection at Durum Drive. The right-of-way allows for a four-lane cross-section, but as of October 2022 the street was constructed with a two-lane cross-section, but with extra pavement at the intersection with Durum Drive. That intersection is discussed in more detail in Sections 4.3 and 5. Durum Drive has a wide (approximately 12 m) pavement and a gently curving alignment, with parking permitted on both sides of the street. Adjacent lands are developed with fronting low-density residential uses, with direct access and sidewalks on one side. Street intersections are provided at spacing ranging from 40 m to 240 m . There is a park along one segment of Durum Drive, and in that segment, there is a speed reader sign.

The collector streets noted above all have fronting residential land uses, direct access, and sidewalks. Those factors mean that the streets are well integrated with the adjacent land use, and thus the access function
of the streets is important. That can create an imperative to limit vehicle speeds. That is discussed in more detail in Section 4.3.

Unlike those streets, Maryland Avenue is much less integrated with its adjacent lands, which are undeveloped, backing onto the street, or developed with commercial uses with large setbacks. Maryland Avenue also has a completely straight alignment and a nearly 800 m long segment with no traffic control, and a rural cross-section. Those factors make Maryland Avenue feel more like the arterial roads in the study area than a collector street. City of Brandon staff indicated that the City has received complaints about vehicle speed on Maryland Avenue. The City has attempted to address those issues by adding a "BEGINS" tab to the $50 \mathrm{~km} / \mathrm{h}$ speed limit sign at the start of that segment, just west of $18{ }^{\text {th }}$ Street. Section 4.3 includes discussion on speeds on Maryland Avenue.

Planned Future Infrastructure

Per the City's Development Charge Background Study (see Section 2.3), the study team was aware of several road improvements planned for the study area, including:

- Twinning Richmond Avenue between $26^{\text {th }}$ Street and $34^{\text {th }}$ Street
- Upgrading $34^{\text {th }}$ Street from Park Avenue (north of Richmond Avenue) to Patricia Avenue
- Developing Patricia Avenue as a two-lane undivided urban arterial street from $1^{\text {st }}$ Street (east of $18^{\text {th }}$ Street) to $38^{\text {th }}$ Street (west of $34^{\text {th }}$ Street).
- Upgrading $18^{\text {th }}$ Street to an arterial street standard from Maryland Avenue to south of Patricia Avenue.
- Roundabouts at $26^{\text {th }}$ Street and Maryland Avenue, $34^{\text {th }}$ Street and Patricia Avenue, $34^{\text {th }}$ Street at a new collector street in Brookwood South and Bellafield, and Patricia Avenue and $18^{\text {th }}$ Street. $34^{\text {th }}$ Street at Aberdeen Avenue is identified for either a roundabout or a signalized intersection.

The study team considered the need for those changes in the analyses and reviews in Section 4.
The study team was aware that MTI has plans to extend PTH 110 from PTH 10 ($18^{\text {th }}$ Street) to the west, with a connection to PTH 1 west of Brandon. The study team and the City of Brandon were not aware of a timeline for that extension. Further, the extension would be unlikely to affect traffic volumes in the study area, unless $34^{\text {th }}$ Street was connected to the extension. The study team and City of Brandon staff agreed that it would not be productive to attempt to estimate traffic volumes for a future scenario with those changes in place. Instead, in Section 4.9 the study team provided comment on future traffic capacity to serve additional traffic at $34^{\text {th }}$ Street and Patricia Avenue.

2.4.2 Truck Routes

Brandon Traffic By-law 5463 defines the truck route network. $18^{\text {th }}$ Street is the only designated truck route in the study area. City of Brandon staff noted that $34^{\text {th }}$ Street and Patricia Avenue could be designated truck routes in the future, to serve industrial development on $34^{\text {th }}$ Street south of Patricia Avenue.

2.4.3 Active Transportation

As noted in Section 2.4.1, collector streets in Brookwood North and Parkdale Heights include sidewalks on at least one side. The sidewalk network in Brookwood North extends south to the end of Lakeview Drive (north edge of Brookwood South), and the sidewalk network in Parkdale Heights extends south of Maryland Avenue. Controlled pedestrian crossing are provided on Richmond Avenue at Brookwood Drive, and on $34^{\text {th }}$ Street at Aberdeen Avenue.

Cycling infrastructure includes multi-use paths along Richmond Avenue, $34^{\text {th }}$ Street, Maryland Avenue, and $26^{\text {th }}$ Street, as well as paths along retention ponds in Brookwood North, paths in Parkdale Community Park, and a north-south path west of Derlago Drive in the developing Bellafield neighbourhood. The paths along $34^{\text {th }}$ Street, Richmond Avenue, and $26^{\text {th }}$ Street are part of the Brandon City Loop cycle route, which provides continuous connections around the City.

Planned Future Infrastructure

The Secondary Plan and conceptual neighbourhood plans include extensive AT path networks in Brookwood South, Bellafield, and the Annex Lands.

Figure 4 illustrates the existing and proposed active transportation infrastructure in the study area.

FIGURE 4: ACTIVE TRANSPORTATION NETWORK

As part of this TIS the study team reviewed the proposed AT path network and provided recommendations on the sidewalk network. Section 4.2 outlines the review and recommendations.

2.4.4 Transit

Existing transit service in the study area is limited to the \#8 Maryland West Route, the \#14 Victoria West Route, and the \#17 South Central Route. All routes run north-south with service to Downtown.

The \#8 route provides service along $26^{\text {th }}$ Street and Maryland Avenue at the northeast limit of the study area, providing service to Brandon Shopper's Mall and Downtown Brandon. The \#14 route provides service along $34^{\text {th }}$ Street to the Westview neighbourhood, north of Brookwood North. \#17 route provides service
along $18^{\text {th }}$ Street and Currie Boulevard, with connections to neighbourhoods east of $18^{\text {th }}$ Street, and to Downtown Brandon.

Planned Fułure Service and Infrastructure

The study team was not aware of any planned future transit service. The study team reviewed potential future transit routing and stop locations in the study area. See Section 4.4.

2.5 Nearby Developments

The study team was aware of three nearby developments relevant to the TIS:

- A commercial development at 2222 Currie Boulevard including a $37,000 \mathrm{ft}^{2}$ building intended for development as a restaurant and department store based on the highest density within the zoning. As of 2022, a car dealership was being constructed on the site.
- The largely residential development proposed in the Southeast Brandon Secondary Plan Area.
- A recently completed hockey arena and school located on the south side of Patricia Avenue, west of $34^{\text {th }}$ Street.

Figure 5 shows the nearby developments in relation to the study area.

FIGURE 5: NEARBY DEVELOPMENTS

The TIS for the Southeast Brandon Secondary Plan Area considered trips between the Southeast Secondary Plan Area and commercial development on the Annex Lands. In this study those trips were considered as part of the trips heading east on Patricia Avenue to/from the Annex Lands.

Trips generated by development at 2222 Currie Boulevard were taken from a TIS completed by WSP and provided to the study team by the City of Brandon. Those trips are noted in Section 3.2.

The hockey arena and school opened in late 2021, and thus its traffic affects may be seen in counts conducted in 2022. However, traffic from that development will not be included in older traffic counts. As such, the hockey arena and school were considered in the processing of adjusting historical traffic counts to 2022 levels, detailed in Section 3.1.

City of Brandon staff noted that development further west and south of the study area was unlikely to proceed within the 30 -year time horizon considered in this TIS. As such, development of those lands was not considered in the TIS.

2.6 Analysis Scenarios

Analyses focused on 2022 existing conditions to provide an understanding of existing conditions, and on 2052 post-development conditions to identify long-term infrastructure needs. The sensitivity analyses in Section 4.9 also considered interim scenarios in 2027, 2032, 2037, 2042, and 2047 horizons with partial build out in the study area. The study team considered that development in the SPA would account for essentially all growth in traffic volumes and travel demand in the study area, with little growth in background demand merely passing through the study area. As such, there was not a need to consider background conditions at the interim horizons.

For each scenario, analyses primarily considered conditions during the weekday AM peak hour and during the weekday PM peak hour. Some analyses also considered conditions during the peak six hours of a typical weekday (two hours in the morning, two hours at mid-day, two hours in the afternoon) or average daily traffic volumes. Evening and weekend conditions were not considered.

3 TRAVEL DEMAND

The study team quantified travel demand in the study area, with demand considered in four categories:

1. Existing "background" travel demand, as quantified by traffic counts
2. Future background travel demand growth, independent of development in the SPA
3. Future travel demand growth due to development in the SPA
4. Total future "post-development" travel demand, including future growth due to development in the SPA and other development independent of the SPA

Demand was quantified at each of the study intersections listed in Section 1.1. Quantification focused on vehicle traffic volumes, with consideration for the general magnitude of pedestrian and cycling volumes.

The following sections outline how each category of demand was quantified.

3.1 Existing Travel Demand

Existing travel demand was quantified using intersection turning movement counts (TMCs) conducted at study intersections:

- $34^{\text {th }}$ Street at Aberdeen Avenue/Lakeview Drive

Conducted by the City of Brandon
Friday December 10 th , 2021, 6:00 AM to 10:00 PM
AM Peak Hour: 8:00-9:00 AM
PM Peak Hour: 4:30-5:30 PM
Conducted by the City of Brandon
Monday December 13 ${ }^{\text {th }}, 2021$, 6:00 AM to 10:00 PM
AM Peak Hour: 8:00 - 9:00 AM
PM Peak Hour: 3:45-4:45 PM

- $26^{\text {th }}$ Street at Maryland Avenue

Conducted by the City of Brandon
Tuesday February 23, 2021, 12:00 AM to 11:59 PM
AM Peak Hour: 8:00-9:00 AM
PM Peak Hour: 3:30-4:30 PM

- $34^{\text {th }}$ Street at Patricia Avenue

Conducted by the City of Brandon
Tuesday September 10, 2019, 6:00 AM to 7:00 PM
AM Peak Hour: 7:00-8:00 AM
PM Peak Hour: 4:15-5:15 PM

- $18^{\text {th }}$ Street at Patricia Avenue

Conducted by the University of Manitoba Transport Information Group (UMTIG)
Wednesday May 8, 2013, 2:00 PM to 9:00 PM
Thursday May 9 2013, 7:00 AM to 2:00 PM
AM Peak Hour: 8:00-9:00 AM
PM Peak Hour: 4:45-5:45 PM

- Patricia Avenue at Brentwood Trace

Conducted by the City of Brandon
Tuesday August 23, 2022, 12:00 AM to 11:59 PM
AM Peak Hour: 7:30-8:30 AM
PM Peak Hour: 3:30-4:30 PM
The study team also had access to two TMCs at the intersection of $18^{\text {th }}$ Street and Maryland Avenue, from 2013 and 2019. Those TMCs allowed the study team to estimate changes in volume at the intersection of $18^{\text {th }}$ Street and Patricia Avenue from 2013 to 2019. The details for the counts at $18^{\text {th }}$ Street and Maryland Avenue include:

- $18^{\text {th }}$ Street at Maryland Avenue

Conducted by UMTIG
Monday May 6, 2013, 7:00 AM to 2:00 PM
Tuesday May 7, 2013, 2:00 PM to 7:00 PM
AM Peak Hour: 7:45-8:45 AM
PM Peak Hour: 4:45-5:45 PM

Conducted by MORR
Tuesday May 28, 2019, 3:30 PM to 5:30 PM
Wednesday May 29, 2019, 7:00 AM to 9:00 AM
AM Peak Hour: 7:45-8:45 AM
PM Peak Hour: 5:00-6:00 PM
Appendix B includes the raw count data, as well as information on the adjustment process for the count at $18^{\text {th }}$ Street and Patricia Avenue.

The study team also had access to several street segment counts conducted by the City of Brandon. Those counts either covered several days and gave hourly volumes, or simply provided a daily total in each direction. The counts were collected at all or most legs of intersections, but they did not include the actual turning movements at the intersection. The study team used the segment counts to estimate those movements. The segment-to-turning movement estimation process is documented in Appendix B.

The segment counts included:

- Richmond Avenue at Brookwood Drive

East leg counted Wednesday May 25, 2022, to Friday May 27, 2022
South leg counted Friday June 10, 2022 to Wednesday June 15, 2022

North leg counted Wednesday June 15, 2022 to Friday, June 17, 2022
West leg not counted

- Richmond Avenue at $34^{\text {th }}$ Street

East leg counted Wednesday May 18, 2022 to Friday May 20, 2022
South leg counted Friday May 20, 2022 to Wednesday May 25, 2022
West leg counted Wednesday May 25, 2022 to Friday May 27, 2022
North leg counted in May 2022 (daily total only)

- $26^{\text {th }}$ Street at Durum Drive

North, south, and west legs counted Wednesday August 3, 2022 (daily totals only) East leg not counted

Figure 6 shows a summary of the unadjusted count volumes. Volumes are shown for the AM peak hour, with PM peak hour volumes following in parentheses and daily traffic volumes in square brackets.

After converting the segment counts to estimated intersection turning movement volumes, the study team balanced the volumes between intersections and adjusted old counts to 2022 levels. The following points outline the balancing and adjustment process, which is outlined in more detail in Appendix B:

- For the 2021 count at $34^{\text {th }}$ Street and Aberdeen Avenue, movements to/from the north leg were balanced to the 2022 segment count on $34^{\text {th }}$ Street south of Richmond Avenue. The other movements were adjusted using the factor of 2022 volumes to 2021 volumes from the north leg.
- The count at $34^{\text {th }}$ Street and Patricia Avenue (collected in 2019) was adjusted to align with the adjusted volumes at $34^{\text {th }}$ Street and Aberdeen Avenue. There were 12 single family homes with access to $34^{\text {th }}$ Street between Aberdeen Avenue and Patricia Avenue, so the study team allowed for imbalances of up to 15 vehicles per hour (vph) between those intersections. Adjustments at $34^{\text {th }}$ Street and Patricia Avenue were focused on the southbound left-turn and westbound rightturn, representing increases in traffic traveling east on Patricia Avenue from development in Brookwood North.

The count was also adjusted to include volumes generated by the hockey arena and school that opened in late 2021, on Patricia Avenue west of $34^{\text {th }}$ Street. The study team assumed one trip per peak hour per student (40) and teacher (1). All trips were assumed to enter during the AM peak hour and leave during the PM peak hour. This was a conservative, worst-case generation figure that did not consider any arrivals/departures outside the peak hours, or any carpooling. Volumes were distributed to/from the north on $34^{\text {th }}$ Street and the east on Patricia Avenue, with consideration for the balance at intersections further east on Patricia Avenue and north on $34^{\text {th }}$ Street. Daily traffic volumes were estimated by "factoring up" the peak hour volumes using peak hour to daily volume relationships from the rest of the study area. On event days, traffic in the evenings-and total daily traffic—may be greater than the figures included in this TIS.

- The 2013 count at $18^{\text {th }}$ Street and Patricia Avenue was adjusted to 2022 using growth rates calculated from the 2013 and 2019 counts at $18^{\text {th }}$ Street and Maryland Avenue. Separate rates were used for movements travelling through on $18^{\text {th }}$ Street (which showed little growth) and turning to/from the east and west, which showed growth rates in the $2 \%-4 \%$ range. The study team took this to represent growth in Bellafield, which likely had a larger impact on Maryland Avenue than on Patricia Avenue. However, the 2013 turning movement volumes on Patricia Avenue were quite low, so larger growth rates would not equate to huge growth in absolute terms. The study team thus used slightly reduced, $2 \%-3 \%$ growth rates for turning movements to/from Patricia Avenue.
- The 2021 count at Maryland Avenue and $26^{\text {th }}$ Street was increased by 3% to represent development from 2021 to 2022. This was an assumed growth rate, based on the observed 2\%4\% annual growth rates on Maryland Avenue at 18 ${ }^{\text {th }}$ Street, from 2013 to 2019.
- The 2022 count at $26^{\text {th }}$ Street and Durum Drive only included total daily volumes, and it was collected during the summer months, and thus would not include school traffic. The study team estimated that the AM and PM peak hour volumes would each be equivalent to 10% of the daily total, and then balanced the resulting volumes to the volumes at $26^{\text {th }}$ Street and Maryland Avenue. The balancing process involved adjustments of no more than 19 vph , suggesting that the 10% daily to peak hour conversion was a reasonable starting point.

Figure 7 shows the 2022 existing traffic volumes after adjustments and balancing. Volumes are shown first for the AM peak hour, with PM peak hour volumes following in parentheses and daily traffic volumes noted as such.

FIGURE 6: RAW DATA VOLUMES

FIGURE 7: 2022 BACKGROUND

3.1.1 Peak Hour Factors and Heavy Vehicle Percentages

Peak hour factors (PHFs) represent the fluctuation in traffic within the peak hour. They are defined with the following formula:

$$
\text { PHF }=\frac{\text { Peak Hour Volume }}{4 \times \text { Peak } 15 \text { Minute Volume }}
$$

Higher PHFs represent more consistent volumes during the peak hour, while lower volumes represent concentration of volume into a smaller period within the peak hour. Intersections on arterial streets typically see PHFs ranging from 0.85 to 0.95 , with PHFs generally increasing as peak hour volumes approach capacity. PHFs were used in the traffic operations analysis discussed in Section 4.6.

The intersection turning movement counts included volumes in 15-minute intervals, which allowed for calculation of PHFs. PHFs could not be calculated at the other intersections where volumes were estimated from segment counts. Table 4 shows the calculated PHFs for the AM peak hour and the PM peak hour.

TABLE 4: PEAK HOUR FACTORS

Intersection	AM Peak Hour Factor	PM Peak Hour Factor
$34^{\text {th }}$ Street and Aberdeen Avenue	0.74	0.90
$26^{\text {th }}$ Street and Maryland Avenue	0.65	0.73
$34^{\text {th }}$ Street and Patricia Avenue	0.57	0.81
Patricia Avenue and Brentwood Trace	0.78	0.73
$18^{\text {th }}$ Street and Patricia Avenue	0.80	0.85

Peak hour factors were lower than typical, consistent with the relatively low volumes in the study area.
The heavy vehicle percentage (HV) is another parameter used in the traffic operations analysis in Section 4.6. Counts provided by the City of Brandon did not distinguish between heavy vehicles and passenger cars, and thus HV\% could not be calculated for those intersections. However, the count at $18^{\text {th }}$ Street and Patricia Avenue (conducted by UMTIG) did allow for calculation of HV\%. The count showed that heavy vehicles accounted for approximately 5% of peak hour through traffic on $18^{\text {th }}$ Street, and between 0% and 10% of turning movement traffic. HV\% for other intersections are discussed in Section 4.6.1.

3.1.2 Pedestrian and Cyclist Counts

The turning movement counts conducted by the City of Brandon included counts of pedestrians and cyclists crossing each leg of the intersection. The counts showed 10-20 pedestrians using the crossing on $34^{\text {th }}$ Street at Aberdeen Avenue in each of the peak hours, and 10 pedestrians crossing at Maryland Avenue and $26^{\text {th }}$ Street in the PM peak hour. No other pedestrian activity was observed, and no cyclists were counted.

3.2 Future Background Travel Demand

Background traffic-traffic passing through the study area but not generated by the new development in the SPA-could grow in the future due to regional increases in activity, and/or due to other developments near the study area.

The study area is at the edge of Brandon, so regional background traffic growth would represent trips between Brandon and external areas to the south and west. Those areas are rural with relatively sparse development, and the study team assumed that any regional traffic growth would be marginal. This was consistent with the traffic counts at $18^{\text {th }}$ Street and Maryland Avenue, which showed little growth in $18^{\text {th }}$ Street through traffic from 2013 to 2019. The study team did not include any increase in background traffic due to regional growth.

Recall from Section 2.5 that the study team was aware of a nearby development at 2222 Currie Boulevard. The City of Brandon provided the TIS for that development, which showed an increase of $30-45$ vehicles per hour (vph) at $18^{\text {th }}$ Street and Patricia Avenue, but marginal (less than 5 vph) increases on other intersection movements, and no impact at other study intersections. The study team included those volumes in the future background traffic volumes for all future scenarios (2027 through 2052).

The traffic projections thus included little growth in background traffic. Development in the SPA was assumed to account for nearly all traffic growth in the study area through 2052.

The study team did not perform any forecasts of future changes in background pedestrian, cycling, or transit demand.

3.3 Development Generated Travel Demand

Development generated travel demand was considered in detail for vehicle trips, but only generally for trips by walking, cycling, and transit.

Vehicle trips were estimated using a four-step process:

1. Trip Generation - How many trips will begin and end at the development?
2. Directional Distribution - Where will trips be going to and coming from?
3. Mode Split - Will trips by non-vehicle modes account for a greater share of all trips than is typical for suburban areas?
4. Route Assignment - How will vehicle trips navigate through the street network to complete their trips?

Trips by walking, cycling, and transit were only considered at the trip generation step. The following sections outline the calculations for each step.

3.3.1 Trip Generation

Development generated traffic volumes were forecast using vehicle trip generation rates from the Institute of Transportation Engineers (ITE) Trip Generation Manual, $11^{\text {th }}$ Edition, a standard reference for trip generation rates derived from existing developments across North America, drawing on data from the 1970s to the present day. Rates are categorized by land use, and the study team selected the following land use categories to represent the development proposed in the SPA:

- Land Use \#210 Single-Family Detached Housing to represent the single-family homes
- Land Use \#215 Single-Family Attached Housing to represent the townhouse units
- Land Use \#221 Multifamily Housing (Mid-Rise) to represent the apartment units
- Land Use \#520 Elementary School to represent the new Brandon School Division (BSD) school and the new Division Scolaire Franco-Manitobaine (DSFM) school
- Land Use \#565 Daycare Center to represent the daycare centre
- Land Use \#820 Shopping Center to represent the big-box commercial development in the Annex Lands
- Land Use \#822 Strip Retail Plaza (<40 k) to represent the neighbourhood commercial development

For the single-family homes, the study team cross-referenced the ITE data against trip generation rates derived from the traffic counts on Brookwood Drive at Richmond Avenue and Lakeview Drive at $34^{\text {th }}$ Street. Those counts captured all traffic coming in and out of Brookwood North. The counts were then divided by the number of residences in the neighbourhood to give a Brandon-specific, 2022 trip generation rate for predominantly single family residential development. Brookwood North included approximately 420 units, 24 of which were attached. The counts did not allow for the attached units to be separated from the single family homes, so the 24 attached units were included in the total unit count. The rate derivation calculations are included in Appendix B.

Table 5 shows the comparison between ITE rates from Land Use \#210 Single Family Detached Housing and the rates calculated for Brookwood North.

TABLE 5: LOW-DENSITY RESIDENTIAL VEHICLE TRIP GENERATION RATES

Period	ITE Land Use 210 Rates [trips per unit]	Brookwood North Rates [trips per unit]	Brookwood North \% Difference vs ITE
AM	0.70	0.78	$+12 \%$
PM	0.94	0.89	-5%
Daily	9.43	7.78	-18%

The counts from Brookwood North showed AM peak hour trip generation approximately 12% higher than the ITE rates, but PM peak hour generation was 5% lower, and daily trip generation was 18% lower than

SOUTHWEST BRANDON SECONDARY PLAN AREA TRAFFIC IMPACT STUDY

3. Travel Demand

ITE. The study team was hesitant to use the Brookwood North rates exclusively, since they were only derived from short period counts, while the ITE data was derived from a much larger sample with more than 170 studies. The study team thus elected to use the average of the ITE rates and the Brookwood North rates for trip generation forecasts. This combined the up to date and Brandon specific Brookwood North rates with the larger sample size from the ITE rates.

For the other land uses the study team used unaltered ITE rates. Table 6 shows the selected trip generation rates and the resulting trip generation forecasts at full build out using the base case development parameters from Table 1 in Section 2.2.

TABLE 6: VEHICLE TRIP GENERATION ESTIMATES

Land Use (ITE Land Use \#)	Quantity	Trip Generation Rates	Trip Generation Estimates
Single Family Homes (210*)	1,083 units	0.74 AM trips per unit 0.92 PM trips per unit 8.60 Daily trips per unit	804 AM trips 991 PM trips 9,318 Daily trips
Townhouses (215)	596 units	0.48 AM trips per unit 0.57 PM trips per unit 7.20 Daily trips per unit	286 AM trips 340 PM trips 4,291 Daily trips
Apartments (221)	1,562 units	0.37 AM trips per unit 0.39 PM trips per unit 4.54 Daily trips per unit	578 AM trips 610 PM trips 7,096 Daily trips
Schools (520)	500 students	0.74 AM trips per student 0.16 PM trips per student 2.27 Daily trips per student	370 AM trips 80 PM trips 1,135 Daily trips
Daycare Centre (565)	60 children	0.78 AM trips per student 0.79 PM trips per student 4.09 Daily trips per student	47 AM trips 47 PM trips 245 Daily trips
Big-Box Commercial (820)	$640,000 \mathrm{ft}^{2}$ floor area	0.84 AM trips per 1,000 ft^{2} 3.40 PM trips per $1,000 \mathrm{ft}^{2}$ 37.01 Daily trips 1,000 ft ${ }^{2}$	538 AM trips 2,176 PM trips 23,686 Daily trips
Neighbourhood Commercial (822)	$38,000 \mathrm{ft}^{2}$	2.36 AM trips per 1,000 ft^{2} 6.59 PM trips per $1,000 \mathrm{ft}^{2}$ 54.45 Daily trips 1,000 ft ${ }^{2}$	89 AM trips 248 PM trips 2,053 Daily trips
		TOTAL	2,712 AM trips 4,492 PM trips 47,824 Daily trips

* Rate averaged from ITE data and counts from Brookwood North

Development in the SPA is forecast to generate 2,712 trips during the AM peak hour, 4,492 trips during the PM peak hour, and 47,824 daily trips. Detailed calculations including the split of inbound and outbound trips are included in Appendix B. The big-box commercial land use is forecast to be the largest individual trip generator, accounting for nearly half of the forecast PM peak hour and daily vehicle trip generation.

For reference, the study team compared the trip generation forecasts to estimates from previously completed TISs for Brookwood South and Bellafield. Those TISs used unit counts that were available at the time (as of 2015), and trip generation rates from the $7^{\text {th }}$ Edition of the Trip Generation Manual. Further, the TIS for Brookwood South did not include the BSD School, and the TIS for Bellafield did not include the neighbourhood commercial component. The TISs forecast 7,900 vehicle trips per day from Brookwood South, and 8,500 trips per day from Bellafield. In this TIS, the development in Brookwood South is forecast to generate 6,900 vehicle trips per day, and development in Bellafield is forecast to generate 7,000 vehicle trips per day. The Brookwood South TIS had the same unit counts as this TIS, so the difference in trip generation was due to higher rates. For Bellafield, the higher trip generation estimate in the previous TIS was due to a higher unit count and higher trip generation rates.

Pass-By Trips

For the commercial area, the study team considered that some trips would likely be "pass-by" trips, drawn from existing through traffic on $18^{\text {th }}$ Street, rather than entirely new trips. The ITE Trip Generation Handbook-a companion to the Manual-indicates that developments in the land use \#820 category see an average of 34% of their PM peak hour trips as pass-by trips. No data was provided for the AM peak hour or daily trips, or for other land uses. The study team applied the 34% pass-by trip rate to the commercial big-box commercial area and found that the resulting pass-by trips were equivalent to 61% of the traffic on $18^{\text {th }}$ Street, where the pass-by trips were be drawn from. In the study team's view, it was not realistic to expect 61% of existing traffic on $18^{\text {th }}$ Street to divert in to the commercial development. The study team tested other pass-by trip percentages for the AM and PM peak hours and for daily trips and found that pass-by trip rates of 5 to 10% resulted in pass-by trips that were equivalent to 7% to 9% of traffic on $18^{\text {th }}$ Street. That was a more reasonable portion of $18^{\text {th }}$ Street traffic diverting to the commercial development. The study team thus applied pass-by trip rates of 10% for the AM peak hour, 5% for the PM peak hour, and 10% for daily traffic, with those rates representing the portion of development traffic drawn from existing traffic on $18^{\text {th }}$ Street, rather than entirely new trips. These pass-by trips were taken from northbound and southbound traffic at $18^{\text {th }}$ Street and Patricia Avenue and assumed to access the development via the new access on $18^{\text {th }}$ Street south of Patricia Avenue.

Pass-by trip calculations are included in Appendix B.

Walking, Cycling, and Transit Trips

While the Trip Generation Manual primarily provides vehicle trip generation rates, it includes trip generations by other modes, for some land use categories. This is an emerging area for trip generation data, and as such the sample sizes are relatively small; in most cases rates are based on fewer than 10 studies.

Table 7 shows the available trip walking, cycling, and transit trip generation rates.

TABLE 7: WALKING, CYCLING, AND TRANSIT TRIP GENERATION RATES

Land Use (ITE Land Use \#)	AM Peak Hour Rate	PM Peak Hour Rate	Daily Rate
Single Family Homes (210)	-	-	-
Townhouses (215)	0.11 trips per unit	0.18 trips per unit	-
Apartments (221)	0.06 trips per unit	0.07 trips per unit	-
Schools (520)	0.25 trips per student	-	-
Daycare Centre (565)	-	-	-
Big-Box Commercial (820)	-	0.04 trips per 1,000 ft^{2}	-
Neighbourhood Commercial (822)	-	0.06 trips per 1,000 ft^{2}	

Rate coverage was spotty, with no daily rates and limited data for schools and commercial developments. More rates were available for residential land uses, but not for daily trips or for single family homes. However, the study team's intent was to consider walking, cycling, and transit demand in more of a general way, and these rates helped to provide some quantification of that demand, at least during the peak hours. The study team thus generalized the rates and then estimated peak hour walking, cycling, and transit demand from the development in the SPA. The generalized rates were:

- Residential land uses: 0.12 walking, cycling, and transit trips per unit during the peak hours
- Schools and Daycare: 0.25 walking, cycling, and transit trips per student during the peak hours
- Commercial: 0.05 walking, cycling, and transit trips per student during the peak hours

Applied to development in the SPA, those rates yielded approximately 560 walking, cycling, and transit trips during each of the peak hours. The residential land uses were the heaviest generators, accounting for 390 of the 560 trips, or 70%. Detailed calculations are included in Appendix B.

Note that walking, cycling, and transit demand were considered generally and were not distributed by direction or assigned to routes.

3.3.2 Directional Distribution

The study team considered that vehicle trips from residential areas would likely be heading to and coming from different areas than trips generated by commercial areas or schools. Further, the DSFM school may see trips coming from across Brandon and the surrounding area, while the BSD school would likely see trips coming from nearby areas. As such, the study team developed four separate directional distributions. Trips
were distributed to the arterial streets at the edges of the study area and to nearby neighbourhoods including Brentwood Village and Westview, just east of $18{ }^{\text {th }}$ Street and north of Patricia Avenue.

There will likely be trips made between the residential land uses in the SPA and the schools and commercial areas in the SPA. The study team used engineering judgement to estimate the share of those "internal" trips, such that they accounted for a reasonable share of trips at the residential and non-residential ends. Internal trips were set such that they accounted for no more than 20% of the residential trips during any time period. The 20% threshold was based on the study team's engineering judgement considering the lack of employment in the SPA-at least 80% of trips from the residential lands were assumed to be bound for destinations outside of the SPA. The internal trips also assumed that 85% of trips to/from the BSD school would be coming from and going to residential lands in the SPA. Full internal trip calculations are included in Appendix B.

Table 8 shows the directional distribution splits for residential land uses, commercial land uses, the BSD school, and the DSFM school and daycare.

TABLE 8: VEHICLE TRIP DIRECTIONAL DISTRIBUTION

Direction	Residential Trip Distribution	Commercial Trip Distribution	BSD School Trip Distribution	DSFM School Trip Distribution
West on Richmond Ave	2.5%	2.5%	-	5%
North on 34th St	10%	12.5%	-	10%
North on 26th St	10%	12.5%	-	10%
North on 18th St	15%	24%	-	25%
East on Richmond Ave	15%	12.5%	-	10%
East on Patricia Ave	10%	12.5%	5%	10%
South on 18th St	10%	12.5%	-	10%
West on Patricia Ave	2.5%	2.5%	-	5%
Westview (North of Brookwood North)	-			
Brentwood village	-	-	5%	-
Commercial near		-	5%	-
Richmond \& 18th	10%	-	-	-
Internal	15%	8.5%	85%	15%
TOTAL	100%	100%	100%	100%

Note that residential trips had the distribution biased towards Downtown Brandon and the industrial area east on Richmond Avenue. Commercial trips had a more dispersed distribution, representing trips coming from residential areas in different directions. The DSFM school had a similar distribution. The BSD school had most trips coming from within the SPA, with the remaining trips coming from Brentwood Village, east of $18^{\text {th }}$ Street on Patricia Avenue, and the Westview neighbourhood (north of Brookwood North).

This distribution was applied to trips for the AM peak hour, PM peak hour, and daily trips.

3.3.3 Mode Split

The ITE vehicle trip generation rates are taken from predominantly suburban developments. The rates thus represent conditions where most trips are made by personal vehicles, rather than walking, cycling, or transit. Where development plans and/or the surrounding area are more conducive to walking, cycling, or transit, trip generation estimates can be reduced to account for a greater share of trips by those modes.

The proposed development land use mix, active transportation infrastructure and nearby complimentary land uses are all typical for suburban type developments. The study team thus considered that the ITE rates were a reasonable representation of the proposed development, without any mode split adjustments.

3.3.4 Route Assignment

The study intersections included new intersections within Brookwood South and Bellafield, as well as intersections on the existing arterial street network. Understanding development traffic increases at those locations required a detailed assignment between different areas of the SPA and the destinations listed in Table 8. The study team thus divided the SPA into 11 zones bounded by the edges of the SPA and collector and arterial streets. Figure 8 shows the zones.

FIGURE 8: ANALYSIS ZONES

Residential unit counts were provided by neighbourhood (Brookwood North, Bellafield, Annex Lands), so the study team assigned units to zones based on the area of the zone relative to the total neighbourhood
area. The BSD school was assigned to Zone B, based on City of Brandon input ${ }^{1}$. The DSFM school was assigned to Zone H. The neighbourhood commercial area was assigned to Zone E, and the big-box commercial was assigned to Zone G . This allowed the study team to calculate the vehicle trips generated in each zone-see Appendix B for detailed calculations.

The study team then assigned the trips from each zone to each destination from Table 8, with the trips added to the appropriate study intersections to facilitate each trip. This was done for trips to external destinations, as well as the internal trips. Note that the commercial area in the Annex Lands had access to Patricia Avenue and to $18^{\text {th }}$ Street. The study team thus needed to assume a split between accesses. The study team assigned $2 / 3^{\text {rds }}$ of the commercial traffic to the Patricia Avenue access, as it would be the most direct access for trips from $26^{\text {th }}$ Street and $34^{\text {th }}$ Street, and similarly direct for trips from the north on $18^{\text {th }}$ Street or the east on Richmond Avenue. However, the ultimate distribution of traffic between the accesses will likely depend on part on the location of specific destinations within the Annex Lands-information that was not available when this TIS was conducted.

This process gave development generated traffic volumes at the study intersections. Figure 9 shows the development generated traffic, with AM peak hour volumes shown first, followed by PM peak hour volumes in parentheses, and daily traffic volumes noted as such.

Calculations are included in Appendix B.

3.4 Post-Development Travel Demand

Figure 10 shows the total post-development traffic at the 2052 horizon year, including future background traffic growth from the development at 2222 Currie Boulevard and the development generated traffic. Like the other traffic volume figures, AM peak hour volumes shown first, followed by PM peak hour volumes in parentheses, and daily traffic volumes are noted as such.

[^1]

FIGURE 9: DEVELOPMENT GENERATED TRAFFIC VOLUMES

[^2]
4 FUNCTIONAL REQUIREMENTS

Functional requirements were assessed through a series of analyses and reviews. Those analyses and reviews included consideration of the street and active transportation (AT) networks at a segment or "link" level, detailed assessments of intersection performance, and sensitivity analyses.

Link-level reviews included:

- Network Structure Review to assess street and path network connectivity, coverage, and functional classification.
- Safe Systems Review to identify any potential safety issues arising from how the street and AT networks are structured. This included consideration for the functions served by each streetwith identification of any incompatible mix of functions-and identification of potential need for traffic calming, along with potential treatments to address those needs.
- Transit Review to identify potential routing for future transit service, and potential stop locations.
- Emergency Access and Truck Route Review to review requirements for emergency vehicle access, and truck routes, and to recommend any changes to the street networks to provide the required level of access.

Detailed intersection performance analyses included:

- Traffic Operations Analyses to identify traffic operations performance in terms of delay, level of service, volume to capacity, and queue lengths. This was used to identify requirements for intersection traffic control and lane configurations.
- Traffic Signal Warrant Analyses to identify intersections where conflicting traffic volumes are too high to be adequately serviced by stop control, and traffic signal or roundabout control would be required.
- Pedestrian Crossing Control Analyses to identify requirements for pedestrian crossing control devices where paths met streets at mid-block.

Sensitivity analyses included consideration for:

- Need for treatments at the interim horizon years. This allowed the study team to identify the level of development that would trigger the need for any recommended treatments. This review also considered needs for access during construction.
- Funding for recommended treatments, based on the extent to which the treatments were required to serve development-related needs, background needs, or a combination of the two.
- Treatment robustness against changes in traffic volumes representing different levels of development, including a scenario representing development at the higher end of potential demand forecast by the City of Brandon.

For ease of comprehension, the recommendations synthesized from the reviews and analyses are presented in the next subsection. Subsequent sections provide a detailed account of each review or analysis.

4.1 Recommendations

The study team recommends the following infrastructure for the study area:

- New collector streets in the study area should generally have 10 m pavement widths, which will provide one travel lane in each direction, plus a parking lane on one side. Curb extensions should be provided at intersections, to reduce the clear width to as little as 6 m wide, and no more than 7 m wide. Curb extensions can help to limit vehicle speeds by introducing edge friction, define parking areas, and improve visibility for crossing pedestrians.
- Curb extensions should be installed on Plateau Drive and on Durum Drive, to address the lack of side friction and reduce operating speeds resulting from their wide pavements.
- Speed cushions should be added to Plateau Drive to pre-emptively address speed issues that could arise from its wide pavement, straight alignment, and connectivity to development in Brookwood South.
- Collector streets should include sidewalks on both sides of the street. Where noted in the Secondary Plan network, sidewalks can be superseded by multi-use paths to provide facilities for cycling.
- Two lane cross-sections (one lane in each direction) are sufficient for nearly all collector streets and arterial roads in the study area. Four-lane cross sections are forecast to be required on $18^{\text {th }}$ Street through the study area, and on Patricia Avenue from $18^{\text {th }}$ Street to the proposed Annex Lands access approximately 385 m west of $18^{\text {th }}$ Street. Collector streets in the commercial area of the Annex Lands are also forecast to require four lane sections where they meet $18^{\text {th }}$ Street and Patricia Avenue.
- A street connection between the south extension of $26^{\text {th }}$ Street and the Brentwood Village neighbourhood should be considered a collector street, rather than a local street, and designed as such.
- Right of way should be reserved for potential future collector street connections to the west and south of the study area.
- Multi-use paths at 3 m pavement widths are appropriate active transportation facilities as per national guidelines, both for off-street and on-street alignments. When used on collector street alignments, multi-use paths can replace the sidewalk on one side of the street, while the other side should retain a typical sidewalk.
- A controlled pedestrian crossing should be provided on $34^{\text {th }}$ Street south of Aberdeen Avenue, along the projection of the Maryland Avenue right of way. Sign-controlled pedestrian crossings
should be provided where AT paths cross collector or arterial streets at locations other than roundabout or traffic signal-controlled intersections. Raised crossings should be provided at crossings near schools, except on Maryland Avenue, where the rural cross-section would be less amenable to a raised crossing.
- Speeds should be monitored on Durum Drive, Maryland Avenue and Derlago Drive (Marquis Drive). If speeds are unacceptable, speed cushions can be used to limit vehicle speeds.
- Intersections identified for roundabout control in the Secondary Plan (Figure 11) can achieve good traffic operations performance with single lane roundabouts, provided that a right-turn slip lane is included at the $26^{\text {th }}$ Street and Patricia Avenue roundabout, and that a bypass lane and eastbound and northbound right-turn lanes are provided at the Annex Lands commercial access roundabout on Patricia Avenue. Traffic signals are forecast to be required on $188^{\text {th }}$ Street at Patricia Avenue and at the access to the Annex Lands.
- Transit routes can be extended to provide service on the south extension of Lakeview Drive and on the $26^{\text {th }}$ Street extension. This could include future transit stops on the south extension of Lakeview Drive, Brookwood Drive, the proposed east-west collector in Brookwood South, and the south extension of $26^{\text {th }}$ Street.
- Patricia Avenue should be paved from the existing paved section east of Brentwood Trace, to the west limit of the study area. This will provide a paved surface throughout the study area.
- The intersection of Aberdeen Avenue and Durum Drive should have the west leg modified to remove excess pavement approaching the intersection.

The recommended treatments are illustrated on Figure 11.

FIGURE 11: RECOMMENDED TRANSPORTATION INFRASTRUCTURE

4.2 Network Structure Review

The network structure review assessed street and path network connectivity and coverage, as well as street classification at active transportation (AT) facility types. The review used the collector street and AT network layout proposed in the Secondary Plan and updated to match street and path alignments and land use locations from development plans provided by the City of Brandon.

Figure 12 shows the collector street and AT networks.

FIGURE 12: TRANSPORTATION AND LAND USE AS PROPOSED IN SECONDARY PLAN

4.2.1 Connectivity

Connectivity involves providing direct links between key generators and the surrounding networks, including connections to external areas.

Street Network

The Secondary Plan land use maps shows a potential BSD school located on a new east-west collector street west of $34^{\text {th }}$ Street or on a site in the northeast corner of the intersection of $26^{\text {th }}$ Street and Maryland Avenue. In either location, the collector streets provide direct connections to arterial streets ($34^{\text {th }}$ Street, $18^{\text {th }}$ Street, Richmond Avenue).

Similarly, the Secondary Plan land use maps show higher density residential development located near arterial-collector and collector-collector intersections. In all cases, those land uses are either located immediately adjacent to an arterial street or within a direct—non-circuitous-trip to an arterial street.

Active Transportation Network

Active transportation network connectivity can be considered with the help of "desire lines" illustrating potential demand for trips by active modes. Figure 13 shows desire lines between residential areas in the study area, and key trip generators like schools, commercial areas, and recreational areas. Other nearby attractions include connections to the City Loop Trail, Parkdale Park just north of the study area, and Brandon Shopper's Mall to the northeast of the study area.

FIGURE 13: ACTIVE TRANSPORTATION DESIRE LINES

Desire lines are concentrated in the middle of the study area, particularly east of $34^{\text {th }}$ Street. The existing and proposed active transportation networks provide good service for most of the desire lines. However, there are many desire lines crossing $34^{\text {th }}$ Street between the AT facilities on Richmond Avenue and the proposed AT path on the new east-west collector, a distance of approximately $1,200 \mathrm{~m}$. It may be prudent to have an AT crossing on $34^{\text {th }}$ Street to align with the path east of $34^{\text {th }}$ Street, as an extension of Maryland Avenue. There are also a concentration of desire lines crossing $34^{\text {th }}$ Street near the new east-west collector, so the design of that intersection should consider the potential for significant volumes of people walking and cycling. A similar condition is present at the intersection of $26^{\text {th }}$ Street and Maryland Avenue. Given the future DSFM school on Maryland Avenue, it may be prudent to include an AT crossing on Maryland Avenue near the school, on the alignment for the proposed north-south path. A crossing could also be provided on $26^{\text {th }}$ Street at the connection to the path alignment to Christian Heritage School. Figure 14 illustrates these potential additions to the network.

FIGURE 14: POTENTIAL ADDITIONS TO THE ACTIVE TRANSPORTATION NETWORK

External Connections

External connections are largely provided via the arterial street network (as is appropriate for longer distance trips) at $34^{\text {th }}$ Street to the south and Patricia Avenue and Richmond Avenue to the west. Richmond Avenue and Patricia Avenue are approximately $1,600 \mathrm{~m}$ apart, and there are no collector-level east-west connections in the Brookwood North neighbourhood or in the Secondary Plan transport network for Brookwood South. It may be prudent to reserve space for a future collector street connection to the west in Brookwood South, on an alignment approximately 400 m north of Patricia Avenue. This would help to reserve capacity on Patricia Avenue for longer distance trips and provide a more direct connection to a future BSD school in Brookwood South. Alternatively, a connection could be limited to an active transportation connection.

It may also be prudent to provide external connections to the south, in addition to the connection on $34^{\text {th }}$ Street. Those connections could be made via collector streets spaced at approximately 400 m west of $34^{\text {th }}$ Street (where the extension of Lakeview Drive intersects Patricia Avenue) and at some offset east of $34^{\text {th }}$ Street. Note that the Lakeview Drive extension should not be aligned with the arena access on Patricia Avenue approximately 350 m west of $34^{\text {th }}$ Street, as that would preclude a continuous collector street connection to future development south of Patricia Avenue. If traffic signals or roundabouts were ever required on Patricia Avenue at Lakeview Drive, the arena could be connected to the intersection via a service road.

Proposed external collector street connections would allow for low speed, neighbourhood level connections between the SPA and the future development areas south of Patricia Avenue, while allowing $34^{\text {th }}$ Street to preserve its capacity for a connection to PTH 110. Those connections could also give approximately 400 m intersection spacing on Patricia Avenue, an appropriate spacing for a suburban arterial street. The development of the areas south of Patricia Avenue is likely far into the future, so the near-term and medium-term direction for those connections would be to simply reserve right of way for their future implementation. Additional connections could be provided to that area via collector street extensions from the west edge of the Annex Lands. At a minimum, those connections should be active transportation connections.

Connections to the north are provided at the arterial level via $34^{\text {th }}$ Street and $26^{\text {th }}$ Street-spaced approximately 800 m apart—and at the collector level via Lakeview Drive and Marquis Drive. Those collector street connections are spaced approximately 400 m to 650 m from the parallel arterial streets. That provides a good density of connections for a suburban area like the SPA. However, Plateau Drive extends on a north-south alignment from Brookwood North into Brookwood South, and may provide an additional, local street level connection to the north of the SPA. The function and design of Plateau Drive should be considered carefully: its straight alignment, connection to Lakeview Drive, and extent could have it functioning like a collector street rather than a local street. Similarly, Marquis Drive provides a direct connection between Bellafield and $26^{\text {th }}$ Street via Durum Drive. Development in Bellafield may result in Marquis Drive—and its south extension, Derlago Drive—serving a collector-type function. Traffic calming treatments are recommended on those streets. See Section 4.3.2.

Connections to the east are provided at Maryland Avenue and at Patricia Avenue, spaced at approximately 800 m apart. Development plans show a local street connection to Brentwood Village as an improvement
on the existing informal connection via $26^{\text {th }}$ Street. That connection will likely function more like a collector street than a local street, given that it may serve a significant portion of Brentwood Village, in addition to some of Bellafield.

Recommended external connections are shown on the summary recommendation diagram in Section 4.2.5.

4.2.2 Coverage

The study team reviewed collector street network coverage using a 200 m buffer radius from the collector streets in the proposed network. Figure 15 illustrates the results of the 200 m buffer.

FIGURE 15: COLLECTOR STREET COVERAGE

Collector street coverage is best in the Annex Lands, where nearly all of the lands are within 200 m of a collector street. However, there areas more than 200 m from the collector network in other parts of the study area, largely along the arterial streets. This is a result of Brandon's strong access control on Arterial Streets, where intersections are largely limited to 400 m spacing. However, it may result in some local streets-such as Plateau Drive-functioning more like collector streets than local streets, as they end up serving areas larger than typical for a local street. This may create a need for traffic calming, as discussed in the next Section.

The study team reviewed the proposed active transportation (AT) network coverage with a 200 m buffer radius, representing cycling facility coverage. This is a typical network density used in suburban areas. Figure 16 shows the 200 m buffer applied to the study area.

FIGURE 16: ACTIVE TRANSPORTATION NETWORK COVERAGE

The existing and proposed AT networks provide very good coverage in the study area, with almost the entire area covered, except for a portion of Brookwood North along Lakeview Drive. Lakeview Drive is a less than ideal street for an AT facility, due to the many driveways on the street: there would be frequent potential conflicts, reducing the quality of the cycling experience. The driveways would also preclude any physical separation-any barrier would have openings at such frequent intervals that it would cease to be an effective barrier. In contrast, Plateau Drive has fewer driveways, and is on an alignment more consistent with the desire lines shown on Figure 13. Traffic calming on Plateau Drive may allow it to function as a neighbourhood greenway.

4.2.3 Street Classification

The study team compared forecast daily traffic volumes to typical capacity thresholds from the Transportation Association of Canada (TAC) Geometric Design Guide for Canadian Roads (GDG). That comparison provided insight into appropriate classifications for each collector and arterial street segment. The daily traffic volumes can also provide insight into potential need for widening two-lane sections to fourlanes.

The GDG gives the following typical volume ranges for roads and streets in urban contexts:

- Major Arterial Roads: 10,000 to 30,000 vehicles per day (vpd)
- Minor Arterial Roads: 5,000 to 20,000 vpd
- Collector Streets: $\leq 8,000$ vpd (residential), 1,000 to 12,000 vpd (industrial, commercial)
- Local Streets: $\leq 8,000 \mathrm{vpd}$ (residential), $\leq 3,000 \mathrm{vpd}$ (industrial, commercial)

In the study team's judgement, widening from two lanes to four lanes could be considered when daily traffic volumes reach the 8,000 vpd to 12,000 vpd range. Below that range, two lanes likely provide sufficient capacity, and above that range four lanes are likely required to provide acceptable traffic operations performance. Note that decisions on widening should also consider the adjacent land use context (particularly whether adjacent land uses are fronting or backing onto the road) and lane requirements at intersections. Recommendations for widening are included at the end of this Section.

Figure 19 shows the forecast 2052 post-development traffic volumes. For context, Figure 17 shows the existing daily traffic, and Figure 18 shows the forecast traffic generated by development in the SPA between 2022 and 2052. Recall from Section 3.1 that traffic count data was focused on intersections on the arterial street network. As such, the study team did not have data on background traffic volumes on collector streets further into neighbourhoods and away from arterial streets-this is reflected in the figures for the background and post-development conditions.

FIGURE 17: EXISTING BACKGROUND TRAFFIC VOLUMES

FIGURE 18: FORECAST FULL BUILD OUT DEVELOPMENT GENERATED DAILY TRAFFIC VOLUMES

FIGURE 19: FORECAST 2052 POST-DEVELOPMENT DAILY TRAFFIC VOLUMES

The following points summarize the study team's findings with respect to classification:

- All streets currently classified as arterials (Richmond Avenue, Patricia Avenue, $34^{\text {th }}$ Street, $18^{\text {th }}$ Street, $26^{\text {th }}$ Street) can maintain those classifications. Segments of Richmond Avenue and Patricia Avenue west of $34^{\text {th }}$ Street are forecast to have volumes more like collector streets, but the arterial classification should maintain for continuity with the arterial classification (and volumes) east of $34^{\text {th }}$ Street.
- Patricia Avenue should have its road surface improved from the existing aggregate surface west of Brentwood Trace to a paved surface through the study area.
- Traffic volumes are in the range where widening to four lanes could be considered on the following segments:
- $34^{\text {th }}$ Street from north of Richmond Avenue to Aberdeen Avenue
- Richmond Avenue east of $34^{\text {th }}$ Street
- Patricia Avenue east of $34^{\text {th }}$ Street to $18^{\text {th }}$ Street
- $26^{\text {th }}$ Street north of Maryland Avenue through to the existing four lane segment
- $18^{\text {th }}$ Street through the study area
- Widening is not equally appropriate on all of those roads: the highest volumes and minimal land use conflicts are present on $18^{\text {th }}$ Street and on Patricia Avenue from $18^{\text {th }}$ Street to $26^{\text {th }}$ Street. Those segments should be widened to four-lane divided sections for the 2052 post-development scenario.
- Traffic operations analyses found that intersections on the other segments could provide acceptable performance without four lane divided sections. Those streets should not be widened to four lanes.
- Volumes on the existing collector streets are consistent with typical volumes for collector streets. However, the proposed $26^{\text {th }}$ Street extension in Bellafield has forecast volumes above the typical range for collector streets in residential areas, and the streets in the Annex Lands have forecast volumes at or above the typical range for collectors in commercial areas.
- The function of $26^{\text {th }}$ Street south of Maryland Avenue should be considered carefully-it can be designed to serve the traffic function as a potential minor arterial, but the increased traffic volumes would degrade the environment for pedestrians. This is discussed in more detail in the next section.
- The proposed collector streets in the commercial portion of the Annex Lands can be considered for four-lane sections given the high forecast volumes and the proposed bigbox commercial land use. That type of development is typically automobile oriented, so it is sensible to provide more capacity for traffic. In the residential portion of the annex lands volumes are forecast to be in the typical range for collector streets in residential areas.
- Local streets were not included in the study scope, but Plateau Drive and Marquis Drive are local streets that provide connections into the SPA, and some development generated traffic was assigned to those streets. The study team did not have data on existing traffic on those streetsso the total 2052 traffic could not be estimated—but the development generated traffic shown on Figure 18 included approximately 500 vpd on each of the streets. The combined existing
traffic and development generated traffic could easily exceed the typical volume range for local streets, and those streets could thus function more like collectors than locals. This could be particularly acute on Derlago Drive (the south extension of Marquis Drive), where development traffic is forecast to add $2,200 \mathrm{vpd}$ south of Maryland Avenue. Those streets could be candidates for traffic calming, which is discussed in the next Section.

4.2.4 Active Transportation Facility Selection

In the study team's judgement, it would be appropriate to implement a policy of including sidewalks on both sides of collector streets. This would provide a base network for walking and would facilitate future transit service.

Provisions for cycling and walking off the collector street network are more complex. The study team reviewed the TAC GDG guidance on cycling facility selection. The following points summarize the findings:

- For AT off-street paths, multi-use paths are an appropriate facility. GDG Section 5.3.1.4 provides a recommended design domain of 3 m to 6 m . According to the GDG, a 3 m wide path can serve approximately 100 users per hour, assuming most users are pedestrians. This is likely sufficient for all off-street paths in the AT network. The main means of increasing capacity is widening the path to include a separate sidewalk.
- The GDG Section 5.4 .1 indicates that streets with posted speed limits of $30 \mathrm{~km} / \mathrm{h}$ to $50 \mathrm{~km} / \mathrm{h}$ should have physically separated cycling facilities when traffic volumes are in the range of 4,000 vehicles per day (vpd) and/or when transit service is present. Per Figure 19, this applies to most of the proposed collector street network. For consistency and high-quality AT provision, it would be appropriate to include multi-use paths for all on-street paths on collector streets. Collector streets could include a path on one side, and a sidewalk on the other side.
- In Section 4.2.2, Plateau Drive was identified as a potential location for an additional AT facility. Plateau Drive may not have right-of-way for a separated path, but it will likely have traffic volumes below 4,000 vpd (existing traffic volumes were unavailable, see Figure 18 for forecast development generated traffic on Plateau Drive). In that context, Plateau Drive may be a suitable location for a neighbourhood greenway created through traffic calming. See 4.3.2 for more information.

4.2.5 Summary

The proposed collector street network and AT networks provide generally good connectivity and coverage, but the network could be improved with an active transportation crossing on $34^{\text {th }}$ Street near the Maryland Avenue alignment, right-of-way can be reserved for potential future connections outside the study area, and some local streets may need traffic calming and/or active transportation facilities.

The existing arterial streets in the study area can retain their classifications for the forecast 2052 scenario, and the proposed collector streets can retain their classifications. Widening two four lane cross-sections is likely most appropriate for $18^{\text {th }}$ Street and Patricia Avenue from $18^{\text {th }}$ Street to the proposed $26^{\text {th }}$ Street
extension. In the 2052 scenario, Plateau Drive and Marquis Drive/Derlago Drive may have higher than typical volumes for local streets, so traffic calming should be considered on those streets.

It would be prudent to include sidewalks on both sides of collector streets in the study area. Multi-use paths are appropriate facilities for the proposed AT network in the SPA, including the on-street and off-street alignments. An AT facility on Plateau Drive would address the main gap in AT network coverage. A neighbourhood greenway may be an appropriate facility for that street.

Figure 20 illustrates the recommendations from the Network Structure Review.

FIGURE 20: NETWORK STRUCTURE RECOMMENDATIONS

4.3 Safe Systems Review

A Safe Systems approach seeks to develop a road system consistent with human abilities and limitations. Considered broadly, safe systems can inform transport infrastructure design as well as vehicle design, road user education, and enforcement. Safe Systems approaches look to identify root issues and address them pre-emptively, rather than waiting for serious collisions before acting.

Vision Zero is an application of a Safe Systems approach, with an emphasis on fatal and serious injury collisions. In the Vision Zero approach, all transport fatalities are seen as preventable and thus unacceptable. Roads and streets designed from a Vision Zero approach are able to absorb human errors without resulting in human fatalities.

The study team evaluated the proposed collector street and AT networks against Safe Systems principles and identified areas where special attention may be needed to prevent safety issues from arising. Road function and traffic calming were considered as part of this review.

4.3.1 Safe Systems Principles

Figure 21 shows a Safe Systems principles summary graphic from the United States Federal Highway Administration (FHWA) ${ }^{2}$.

SAFE SYSTEM PRINCIPLES

While no crashes are destrable, the Sate System approach priontizes crashes that result in death and serious infuries, since no one shoulo experience eittier when using the transportation system

Responsibility is Shared

All stakeholders \{uansportation syptern users and managers, venicle manufacturers, etc.) must ensure that crashes oont lead to fatal of serimus injuntes

Humans Make Mistakes

Poople wit inevitably make mistakes that can lead to crashes, but the transportation system can be designed and operated to accommodate human mistakes and injury toletances and avoid death and serious injuries

Safety is Proactive

Proactive tools should be used to identify and mitigate latent risks in the transportation system, tather than waiting for crasibes to occur and reacting atterwarts

Humans Are Vulnerable

People thave limits for tolerating crast forces before denth and serious infury occurs; therefore, it is cntical to design and operate a transportation systerm that is human-centric and accommodates humill vidneratillies.

Redundancy is Crucial

Reducing tisics requires that all parts of the transportation system are strengthened, so that if one part fais, the ofner partis stal protect people

FIGURE 21: FHWA SAFE SYSTEMS PRINCIPLES

[^3]The Netherlands has applied a safe systems approach on the national level, with a simple approach centered around five principles, three of which deal with the design and structure of the transport network. Those principles are quoted directly from the $3^{\text {rd }}$ edition of Sustainable Safety ${ }^{3}$:

- Functionality of Roads

Ideally, road sections and intersections have only one function for all modes of transport (monofunctionality): a traffic flow function or an exchange function. The road network ideally shows a hierarchical and functional structure of these functions.

- (Bio)mechanics

Ideally, traffic flows and transport modes are compatible with respect to speed, direction, mass, size, and degree of protection. This is supported by the design of the road, the road environment, the vehicle, and, where necessary, additional protective devices. For two-wheeled vehicles, it is important that the road and the road environment contribute to the stability of the rider.

- Psychologics

The design of the traffic system is well-aligned with the general competencies and expectations of road users, particularly senior road users. This means that for them as well as others the information from the traffic system is perceivable, understandable ("self-explaining"), credible, relevant and feasible...

According to the functionality principle, heavy or fast traffic flow is not compatible with frequent turning or crossing movements. The road network should be planned such that no road or street is expected to serve both functions at a high level. Instead, some facilities should be roads that prioritize traffic movement and thus manage access, while others should be streets that prioritize access and thus manage speed.

The biomechanics principles includes identification of safe speeds based on different types of potential conflicts. Figure 22 shows a summary from Sustainable Safety.

[^4]| | Sinte $=$ mod |
| :---: | :---: |
|
 | Wikrest |
| arativoct tile lanes： | |
|

 ；mima
 | 㢶的糼 |
|

 5tivpping | 何称为！ |
|

 Stopging dight distanape $\mathrm{Bz}_{\mathrm{z}} \mathrm{m}$ | Sidmath |
|

 | |
| －F

 | |
|

 Stoppinarsightdiftanaeraziom | |
|

 | |

FIGURE 22：SUSTAINABLE SAFETY SAFE SPEEDS BY CONFLICT TYPE
The safe speeds state that where pedestrians may share the road surface with vehicles（which often occurs on local streets without sidewalks），vehicles should operate at no more than $15 \mathrm{~km} / \mathrm{h}$ ．Where vehicles may interact with pedestrians or cyclists at intersections，speeds should be limited to $30 \mathrm{~km} / \mathrm{h}$ ．The safe speeds indicate that $50 \mathrm{~km} / \mathrm{h}$ speeds are appropriate where pedestrians and cyclists are physically separated from vehicles，and intersections can allow right－angle or head－on conflicts between vehicles．Speeds higher than $50 \mathrm{~km} / \mathrm{h}$ are only appropriate where there are no right－angle conflicts，which means that any junctions would require roundabout control－two－way stop control or signalized intersections would not be appropriate．

4.3.2 Application to Study Area

The study team considered how these principles would apply to the study area, under the headings of functionality, shortcutting, alignment, traffic calming, and other applications.

Functionality

Recall from the previous Section that the south extension of $26^{\text {th }}$ Street has volumes in excess of 8,000 vpd-the typical top end volume for urban collector streets. A traffic-oriented planning approach might take that as an indication that $26^{\text {th }}$ Street should be designed to prioritize traffic, with limits on accesses and (potentially) space reserved for future widening to four lanes. However, according to the functionality principle, if $26^{\text {th }}$ Street is intended to serve more of a neighbourhood function with fronting residential development and frequent access, the design should instead prioritize managing vehicle speeds through traffic calming. The study team recommends that course of action for the $26^{\text {th }}$ Street extension, given the neighbourhood context.

The proposed collector streets in the east (commercial) part of the Annex Lands have forecast volumes that are either at the top end of the typical range for collectors or well into the range for arterial streets. The commercial development is intended to have big-box style development-which is amenable to higher traffic volumes-so there may not be as much of a need for traffic calming on those streets. However, the functionality principle indicates that if there is an intent for frequent access points on the collector streets, the design should include speed management measures. Conversely, if there is a desire to provide efficient traffic movement on those streets, access points should be more limited.

The forecast development generated traffic volumes on Figure 18 present additional potential functional conflicts. Plateau Drive—a local street in Brookwood North intended to extend into Brookwood South—is forecast to see an additional 500 vpd from the remaining development in Brookwood North, and additional development in Brookwood South. The study team did not have a count of existing traffic volumes on Plateau Drive, but the forecast growth was equivalent to half of the typical daily volume on local streets in residential areas, indicating that the total volume including existing traffic may exceed the typical range for that type of street. Additionally, Plateau Drive has a straight alignment with a relatively wide (10 m) pavement. Plateau Drive may benefit from traffic calming.

A similar situation could develop on Marquis Drive extending north-south in Parkdale Heights and Bellafield, where development is forecast to add 500 vpd , and $2,200 \mathrm{vpd}$ south of Maryland Avenue-more than the typical volume on local streets, without considering any existing traffic. That traffic is forecast to include 500 vpd bound for the west on Durum Drive. Recall from Section 2.3 that Durum Drive has drawn complaints about vehicle speeds, and it has a wide pavement. Those streets are also candidates for traffic calming.

Shortcutting

The study team considered that congestion may develop at intersections on $18^{\text {th }}$ Street, and the southerly extension of $26^{\text {th }}$ Street may present opportunities for short-cutting. This was not considered in the traffic volumes presented earlier, and it could result in volumes even greater than those shown on Figure 19. Figure 23 illustrates the potential congestion on $18^{\text {th }}$ Street and the potential congestion avoidance route.

Note that the figure includes potential traffic signals on Patricia Avenue at $18^{\text {th }}$ Street and at the access to the commercial area in the Annex Lands, per the results from the traffic operations analysis in Section 4.6.

FIGURE 23: SHORTCUTTING TO AVOID CONGESTION
The attractiveness of $26^{\text {th }}$ Street as a short-cut depends on relative differences in congestion between it and $18^{\text {th }}$ Street, as well as the design and operation of $26^{\text {th }}$ Street. This reinforces the need to prioritize either traffic flow (by limiting access and allowing for future widening) or access (by including speed limiting
measures like traffic calming). A lower-than-typical speed limit, like a $40 \mathrm{~km} / \mathrm{h}$ speed limit, could also be considered, in light of the findings from the $202240 \mathrm{~km} / \mathrm{h}$ posted speed limit trial on Durum Drive.

Additionally, some motorists travelling between the study area and the south on PTH 10 may choose to use the collector streets in the Annex Lands to avoid congestion at $18^{\text {th }}$ Street and Patricia Avenue. Those streets are forecast to have high traffic volumes independent of any shortcutting, so issues around high volumes may already be present.

Long and Straight Alignments

The study team was aware that long, straight segments on collector streets can enable vehicle speeds that are incompatible with a comfortable and safe environment for pedestrians. However, the study team did not have a metric to identify whether a given segment of collector street had an alignment that was too long and/or two straight.

The study team considered Durum Drive, where residents have complained about vehicle speeds. Durum Drive is not a perfect reference as it has a very wide pavement (approximately 12 m wide from curb to curb) that is not representative of typical collector street pavements. However, the study team considered the length of the long and relatively straight segments as a reasonable measure of where a collector street may be too long. The study team identified a segment approximately 300 m long on Durum Drive west of Marquis Crescent, and a segment approximately 325 m long east of Marquis Crescent. The study team thus identified other collector street segments in the study area with straight or gently curved alignments and lengths of at least 300 m . Measurements were taken on street segments between traffic control devices (stop signs, roundabouts, traffic signals) and segments with more significant curves.

Figure 24 shows the collector street segments that met that threshold, along with some other segments with lengths noted for reference.

FIGURE 24: COLLECTOR STREETS WITH LONG STRAIGHT ALIGNMENTS
Existing segments of Lakeview Drive and Brookwood Drive (in Brookwood North) had straight or gently curved segments at least 300 m long. Similar—and longer—lengths were identified in Brookwood South (including Plateau Drive with an 825 m long segment) and the Annex Lands. Maryland Avenue had long and straight segments on either side the intersection with $26^{\text {th }}$ Street, including a segment approximately 800 m long from $26^{\text {th }}$ Street to $18^{\text {th }}$ Street. Note that while Marquis Drive may draw increased traffic volumes, the segments lengths are less than Durum Drive, which may help to control speeds.

The segments listed above would potentially enable high vehicle speeds, and thus may be candidates for traffic calming treatments.

Note that while the $26^{\text {th }}$ Street extension is forecast to see high traffic volumes, the alignment includes many substantial curves, and straight segments are limited in length. That may help to control speeds, although traffic calming may still be appropriate.

Traffic Calming

The study team consulted the TAC Canadian Guide to Traffic Calming for guidance on selecting traffic calming measures for the candidate streets noted in the previous subsections. The Guide notes that it is important to understand the problem(s) that traffic calming is attempting to solve-different problems may require different solutions.

Traffic calming could address:

- High traffic volumes like those forecast on the $26^{\text {th }}$ Street extension and on Derlago Drive (Marquis Drive) south of Maryland Avenue and on the collector streets in the Annex Lands. High traffic volumes can make the street environment less inviting to pedestrians due to increased noise and emissions and reduced crossing opportunities.
- High speeds which are possible on Plateau Drive, Durum Drive, and Maryland Avenue given the combination of straight alignments and wide pavements. High speeds give motorists less time to recognize and avoid conflicts and collisions and increase the severity when collisions do occur.

From the Guide and the study team's judgement, the following treatments are appropriate means of addressing those issues:

- Roundabouts as intersection traffic control devices with traffic calming properties, via the horizontal deflection that vehicles experience when they enter, circulate, and exit the roundabout. Roundabouts thus help to limit vehicle speeds, and the central island provides space for landscaping.
- Curb Extensions which narrow the pavement width to as little as 6 m . The reduced freedom for vehicle movement can help to reduce speeds and volumes, as discretionary vehicle trips may divert to other streets. Curb extensions also narrow crossing distances for pedestrians and make pedestrians more visible to drivers. They can also provide space for streetscaping treatments.

Figure 25 shows an example of curb extensions from Rosser Avenue in Downtown Brandon.

FIGURE 25: CURB EXTENSION IN BRANDON (SOURCE: GOOGLE STREETVIEW)

- Speed Cushions are similar to speed bumps or tables in that they include vertical deflection, but the raised elements are not continuous across the whole pavement. The cushions are spaced such that vehicles with wider axle spacing (like buses and emergency vehicles) can navigate through the cushion without being deflected, while passenger vehicles traverse the cushion and thus limit their speed. This treatment is primarily effective at reducing speeds.

As far as the study team is aware, speed cushions have not been used in Manitoba. They have been used in Ottawa. Figure 26 shows an example from the City of Ottawa.

FIGURE 26: SPEED CUSHION IN OTTAWA (SOURCE: CITY OF OTTAWA)

- Raised Crossings involve changing the grading of pedestrian crossings to be more continuous with the sidewalk, thus imposing some vertical deflection on vehicles and improving motorist visibility of pedestrians. These can be paired with curb extensions to provide high quality pedestrian crossings.

Figure 27 shows an example of a raised crossing, from a mall in suburban Winnipeg.

FIGURE 27: RAISED CROSSING IN WINNIPEG (SOURCE: GOOGLE STREETVIEW)
For all treatments, winter maintenance can be somewhat complicated as compared to an untreated street. Uncareful maintenance can result in damage to the treatments.

The following points outline the study teams recommendations for traffic calming, applied to the study area:

- Collector streets in Manitoba often have pavement widths of approximately 10 m . This allows for parking on one side and one lane of travel in each direction. However, when parking is not utilized, there is little side friction for vehicles, and speeds can increase to levels that are uncomfortable for the community-like on Durum Drive. If curb extensions were included as a standard treatment on collector streets, they would provide some friction without relying on parking utilization. The extensions would also improve motorists' visibility of crossing pedestrians and reduce pedestrian crossing distances. Costs can be negligible-and potentially net negative - if road slabs are truncated at the extensions. In the study team's judgement, this combination of benefits is worth the disbenefit of more difficult snow clearing, and curb extensions should be included on all new collector streets in the SPA. New collector streets can thus have a 10 m pavement width, narrowed to 6 m to 7 m at all street intersections. This provides between 3 m and 3.5 m in each direction at the curb extensions.
- Curb extensions can also be considered as a retrofit on both sides of Durum Drive (12 m pavement width) and on one side of Plateau Drive (10 m pavement width).
- Marquis Drive/Derlago Drive appears to have an 8 m pavement, so there is more inherent friction and less need for extensions.
- Maryland Avenue has a rural cross-section and a pavement width of approximately 7 m . Curb extensions are not feasible with that design.
- Existing segments of Lakeview Drive have dual 6 m wide pavements separated by a median. That cross-section avoids the 10 m clear pavement width noted above. As such, curb extensions are less critical for existing Segments of Lakeview Drive. However, they could be considered for traffic calming if there is reason to believe that the 6 m clear width is contributing to unacceptable vehicle speeds.
- Brookwood Drive has a pavement width of approximately 10 m in the segments between Aurora Crescent and Lakeview Drive, a length of approximately 265 m . Those segments could be considered for curb extensions if vehicle speeds are unacceptable.
- Speed cushions can be added where speeding issues are present. This could include Durum Drive-although it may be worthwhile to record data on speed changes and community perception of speed after curb extensions are installed-and Maryland Avenue. Speed data can also be used to determine whether cushions are required to bring speeds on Maryland Avenue closer to the $50 \mathrm{~km} / \mathrm{h}$ posted speed limit. Speed cushions could also be added to Derlago Drive / Marquis Drive if speeding issues occur.

Speed cushions would be appropriate as a pre-emptive treatment on Plateau Drive, to help limit vehicle speeds to $30 \mathrm{~km} / \mathrm{h}$ and thus allow Plateau Drive to function as a neighbourhood greenway.

- Raised crossings can be added at locations with high crossing demand. This could include intersections around the proposed BSD School in Brookwood South, intersections in Brookwood South where collector streets have moderate-density development on one side and a park on the other side, and near the access to Brentwood Village, which also provides access to Christian Heritage School. Raised crossings are less appropriate on Maryland Avenue near the DSFM school, due to the rural cross-section on Maryland Avenue.
- Traffic calming with curb extensions would be appropriate for the collector street in the residential portion of the Annex Lands, but less appropriate in the commercial areas where four lane sections will be present. Speed cushions can be considered where speed issues arise, and raised crossings can be considered at key locations, which will likely be driven by the location of key generators-details which were not available when this TIS was completed.

Figure 28 illustrates the recommended traffic calming treatments. For context, the figure also shows the existing and proposed AT path network, the location of schools, and roundabouts proposed in the Secondary Plan or found to be required from the traffic operations analysis in Section 4.6.

FIGURE 28: RECOMMENDED TRAFFIC CALMING TREATMENTS

Other Applications

The following points outline the study team's judgement for additional ways that Safe Systems principles would apply to the study area:

- Roundabouts force vehicles to travel slowly at junctions, which is consistent with the functionality and biomechanics principles. Traffic signals rely on separating conflicting traffic flows in time, while still allowing higher speeds through the intersection. Roundabouts are the preferred
intersection treatment for managing vehicle speed and reducing the potential for severe conflicts.
- Two-way stop-controlled intersections allow right-angle conflicts, and should not be used on streets where vehicles operate at speeds greater than $50 \mathrm{~km} / \mathrm{h}$. This is consistent with access management principles which limit uncontrolled access points on higher-speed roads, although the $50 \mathrm{~km} / \mathrm{h}$ cut-off is likely lower than typically used thresholds for considering roads unsafe for uncontrolled access.
- Access to lands along higher-speed roads should be provided via other, lower-speed streets, or via frontage roads that connect to the higher-speed road at junction with signalized or-ideally-roundabout control.
- Vehicles should be limited to $30 \mathrm{~km} / \mathrm{h}$ operating speeds where cyclists are intended to operate on the street but are not provided with physically separated facilities.
- Streets intended for use by cyclists should have physically separated facilities, or they should operate as traffic calmed streets with $30 \mathrm{~km} / \mathrm{h}$ operating speeds.
- Aberdeen Avenue approaches Durum Drive with a pavement that is approximately 7 m wide, widening to 13 m -wide enough for four lanes—at the " T " intersection where Aberdeen Avenue ends. City of Brandon staff indicated that motorists are sometimes confused by that change in pavement width. The wide pavement and lack of landmarks (such as a raised median) mean that motorists approaching on Aberdeen Avenue do not always make right or left-turns from the same location, and motorists turning onto Aberdeen Avenue from Durum Drive may not always turn to the same part of the pavement. This violates the Psychologics principle, which states that the street environment should be understandable and consistent with user expectations. This can be addressed by either reducing the pavement width to a width more typical for streets with one lane in each direction. The study team's recommended design is included in Section 5.

4.4 Transit Review

Recall from Section 2.4.4 that the existing transit network near the study area is focused around providing service to Downtown, with routes running primarily north-south in looping patterns, with northbound and southbound service often separated by distances of 800 m or more. Looping patterns at that spacing do not allow any locations to be within close distance of service in both directions. A residence may be within 100 m of southbound service, but would then be 700 m or more from northbound service. There is limited east-west service to serve neighbourhood to neighbourhood trips.

The study team proposed service extensions with the goal of providing service in both directions on centrally located collector streets within the study area, to maximize the number of residences and destinations that would be within short distances of transit service.

Figure 29 shows the proposed service extensions.

FIGURE 29: EXISTING AND PROPOSED TRANSIT SERVICE

Route 14 could be extended south through Brookwood North on Brookwood Drive and Lakeview Drive, continuing into Brookwood South, before turning onto the proposed east-west collector street, and then ending the route by turning around at the roundabout on $34^{\text {th }}$ Street. The route would then return north via the same route on the east-west collector street, Lakeview Drive, and Brookwood Drive.

Route 8 could be extended south into Bellafield on $26^{\text {th }}$ Street, turning around at the roundabout at the proposed east-west collector street.

New transit stops could be located in Brookwood North near the intersection of Lakeview Drive and Brookwood Drive, in Brookwood south near the intersection of Lakeview Drive and the proposed east-west collector, and further east on that collector near moderate density residential development just west of $34^{\text {th }}$ Street. Additional stops could be added in Bellafield near the connection to Brentwood Village and Christian Heritage School, and near the intersection of $26^{\text {th }}$ Street and the proposed east-west collector.

The study team considered that an extension of Route 17 into the Annex Lands may only bring service 100 to 200 m further into the Annex Lands - a relatively small benefit-but would incur several more turns in the route and potentially more movements through signalized intersections, which would lead to a longer running time for the route. That would entail reduced frequency on the route and/or a requirement for more resources to service the route. The study team considered that the benefits may not justify the costs.

There may be merit to a wider network study to provide better east-west and neighbourhood-toneighbourhood service, as opposed to the existing Downtown-focused network, and/or moving away from the loop-pattern network. However, this was outside the scope of the TIS.

4.5 Emergency Access and Truck Route Review

The study team understands that the City of Brandon typically considers an area to have acceptable emergency services access if access is provided from at least two arterial streets, or-where that is not possible-two accesses from the same arterial street.

The collector street network allows each part of the study area to be connected to have multiple connections to the arterial street network, as shown in Figure 30.

FIGURE 30: EMERGENCY ACCESS CONNECTIONS
Recall from Section 2.4.2 that the existing truck route network in the study area is limited to $18^{\text {th }}$ Street. Commercial development in the Annex Lands would likely be the only part of the SPA development to generate significant truck trips, and that area is accessible directly from $18^{\text {th }}$ Street. The study team judged that no expansion of the truck route network would be required to service the SPA. Additionally, the potential expansion of the truck route network to include $34^{\text {th }}$ Street and Patricia Avenue (see Section 2.4.2) would be compatible with the proposed development in the SPA.

4.6 Traffic Operations Analysis

Traffic operations were analyzed based on the methodology outlined in the U.S. Transportation Research Board's Highway Capacity Manual 2000 (HCM), using the Synchro Studio 9 software package. Synchro
returned performance measures including delay, LOS, volume to capacity ratios, and queue estimates. Appendix A includes definitions for the different LOS categories, and Appendix C includes analysis reports.

Analyses were completed for all of the study intersections listed in Section 1.1. Analyses were conducted for AM and PM peak hour conditions for the 2022 existing conditions scenario and the 2052 postdevelopment scenario representing full build out. Analyses for interim scenarios are discussed in the sensitivity analysis in Section 4.9.

For each scenario, overall intersection performance is reported in terms of delay and level of service. Individual movement performance is reported for "notable movements" where performance was nearing (or at) unacceptable levels. Notable movements were defined as movements where operations met at least one of the following criteria:

- LOS D or worse
- Volume to capacity (v/c) ratio of 0.75 or more
- $95^{\text {th }}$ percentile queue length exceeds available storage

For movements meeting at least one of the criteria, performance is reported in terms of LOS, delay, v/c ratio, and $95^{\text {th }}$ percentile queue lengths.

The study team considered further analysis with modified intersections configurations where movements met at least one of the following criteria:

- LOS F or worse
- v / c ratio of 0.95 or more
- $95^{\text {th }}$ percentile queue length exceeds available storage

Any modifications found to be required for the 2022 existing conditions scenario were carried forward to the 2052 post-development scenario.

4.6.1 Analysis Assumptions

The following points outline analysis assumptions:

- Saturated flow rates were set to a default value of 1,900 vehicles per hour per lane (vphpl).
- Operating speeds were set to the posted speed limits.
- In the analysis for the existing scenario, Peak Hour Factors (PHFs) were based on observed PHFs from the existing traffic counts, as noted in Section 3.1.1. Where PHFs were not available, they were set to a default value of 0.92 . For the 2052 scenario, PHFs were assumed to regress to the default value of 0.92.
- Heavy vehicle percentages (HV\%) were set using the following assumptions:
- Arterial street through movements: 5%
- Movements to/from collector streets: 2%
- Movements to/from the south at $34^{\text {th }}$ Street and Patricia Avenue: 10%, given that an industrial facility is the main generator in that area
- In analyses with traffic signals, signal timings were set based using Synchro's signal timing optimization features, with additional tweaks by the study team.
- Analyses with traffic signals assumed 4 second amber intervals and 2 second all-red intervals for all traffic signal phases.
- Roundabouts were modeled using the roundabout methodology from the 2010 version of the HCM.

4.6.2 Intersection Configurations

Figure 31 illustrates the existing intersection configurations at the existing study intersections.

FIGURE 31: EXISTING INTERSECTION CONFIGURATIONS

The study intersections also included new intersections to provide access to the SPA, and the Secondary Plan indicated that some of them were expected to include roundabout or traffic signal control. Those intersections were modeled in initial configurations as two-way stop-control intersections, and then

M R RR
modeled with the control type indicated in the Secondary Plan. This served to evaluate whether the control listed in the Secondary Plan would provide a traffic operations benefit. Those configurations are noted with the analysis results in the following sections.

4.6.3 Analysis Results

There were nine study intersections in the 2022 scenario analysis, and 15 study intersections in the 2052 scenario analysis. To avoid a large and unwieldy results table, results are presented in a series of tables:

- Table 9 shows the results from the intersections near Brookwood North (Richmond Avenue at Brookwood Drive, Richmond Avenue at $34^{\text {th }}$ Street, and $34^{\text {th }}$ Street at Aberdeen Avenue).
- Table 10 shows the results from the intersections near Brookwood South ($34^{\text {th }}$ Street at Patricia Avenue, Patricia Avenue at the proposed extension of Lakeview Drive, $34^{\text {th }}$ Street at the proposed east-west collector, and the proposed east-west collector at the proposed extension of Lakeview Drive). Per the Secondary Plan, roundabouts were considered on the proposed east-west collector street at the extension of Lakeview Drive, and at $34^{\text {th }}$ Street.
- Table 11 shows the results from the intersections near Bellafield ($26^{\text {th }}$ Street at Durum Drive, $26^{\text {th }}$ Street at Maryland Avenue, proposed $26^{\text {th }}$ Street extension at the proposed east-west collector, and the proposed $26^{\text {th }}$ Street extension at Patricia Avenue). Per the Secondary Plan, roundabouts were considered on $26^{\text {th }}$ Street at Maryland Avenue, the proposed east-west collector street, and at Patricia Avenue.
- Figure 32 shows the results from the intersections near the Annex Lands (Patricia Avenue at Brentwood Trace, Patricia Avenue at the proposed access to the commercial area in the Annex Lands, Patricia Avenue at $18^{\text {th }}$ Street, and the proposed commercial access on $18^{\text {th }}$ Street). Per the Secondary Plan, traffic signals were considered on Patricia Avenue at the commercial access, at $18^{\text {th }}$ Street, and at the proposed commercial access on $18^{\text {th }}$ Street.

In each table, results are shown first for the AM peak hour, with PM peak hour results following in parentheses. Results representing modified intersection configurations (to address shortcomings with the existing intersections) are highlighted in each table.

Findings are summarized in Section 4.6.4.

TABLE 9: TRAFFIC OPERATIONS ANALYSIS RESULTS - BROOKWOOD NORTH

Intersection	Overall Intersection Performance [LOS / Delay]	Notable Movement Performance [Mvmt. / LOS / Delay / v/c Ratio / 95th pctl. Queue]
2022 Existing Conditions		
Richmond Avenue at Brookwood Drive - Two-Way Stop Control	$\begin{gathered} A / 6 \\ (A / 4) \end{gathered}$	All movements LOS C or better, $\mathrm{v} / \mathrm{c}<0.75$ (All movements LOS C or better, v/c < 0.75)
Richmond Avenue at $34^{\text {th }}$ Street - Roundabout	$\begin{aligned} & \text { B / } 10 \\ & \text { (A / } 9 \text {) } \end{aligned}$	All movements LOS C or better, $\mathrm{v} / \mathrm{c}<0.75$ (All movements LOS C or better, v/c < 0.75)
$34^{\text {th }}$ Street at Aberdeen Avenue - Two-Way Stop Control	$\begin{gathered} A / 9 \\ (A / 6) \end{gathered}$	All movements LOS C or better, $\mathrm{v} / \mathrm{c}<0.75$ (All movements LOS C or better, $\mathrm{v} / \mathrm{c}<0.75$)
2052 Post-Development Conditions		
Richmond Avenue at Brookwood Drive - Two-Way Stop Control	$\begin{gathered} A / 5 \\ (A / 4) \end{gathered}$	All movements LOS C or better, v/c <0.75 (All movements LOS C or better, $\mathrm{v} / \mathrm{c}<0.75$)
Richmond Avenue at $34^{\text {th }}$ Street - Roundabout	$\begin{gathered} C / 16 \\ (C / 25) \end{gathered}$	NB / C / 24 / 0.78/55 m (WB / D / $27 / 0.81 / 55 \mathrm{~m}$) (SB / E / $36 / 0.88 / 80 \mathrm{~m}$)
$34^{\text {th }}$ Street at Aberdeen Avenue - Two-Way Stop Control	$\begin{gathered} C / 22 \\ (D / 31) \end{gathered}$	$\begin{aligned} & E B / F / 81 / 0.94 / 65 \mathrm{~m} \\ & (E B / F / 241 / 1.29 / 80 \mathrm{~m}) \end{aligned}$
Modified Option 1 + Roundabout	$\begin{gathered} A / 8 \\ (B / 13) \end{gathered}$	All movements LOS C or better, $\mathrm{v} / \mathrm{c}<0.75$ (All movements LOS C or better, v/c <0.75)
Modified Option 2 + Traffic Signals	$\begin{gathered} B / 11 \\ (B / 12) \end{gathered}$	All movements LOS C or better, $\mathrm{v} / \mathrm{c}<0.75$ (SB / B / 11 / 0.76 / 125 m)
Modified Option 2A + Traffic Signals + Left-Turn Lanes	(A / 9)	(All movements LOS C or better, v/c < 0.75) (SB / A / 9 / 0.65 / 80 m)

AM (PM) Analysis Results
There were no traffic operations performance issues at the intersections around Brookwood North in the 2022 existing conditions scenario.

In the 2052 post-development scenario the roundabout at Richmond Avenue and $34^{\text {th }}$ Street had some movements nearing capacity, particularly in the PM peak hour. Delays were still within reasonable levels (no worse than LOS E), and no movements were at or over capacity.

At $34^{\text {th }}$ Street and Aberdeen Avenue the two-way stop-controlled intersection was over capacity in the PM peak hour for the 2052 post-development scenario, and nearly at capacity in the AM peak hour. That performance warranted consideration of alternatives. Additional analyses showed that a single lane
roundabout would provide good performance, as would a signalized intersection. However, there may be some queueing on the southbound approach in the PM peak hour, unless left-turn lanes are added on $34^{\text {th }}$ Street. The study team selected a roundabout as the preferred treatment, based on the Safe Systems approach discussed in Section 4.3.

Table 10 shows the analysis results from the intersections near Brookwood South. Note that the new intersections included in the 2052 scenario were initially modeled with basic two-way stop-controlled configurations (and all-way stop at the Lakeview Drive / new east-west collector intersection), and then modeled with the roundabouts shown in the Secondary Plan.

TABLE 10: TRAFFIC OPERATIONS ANALYSIS RESULTS - BROOKWOOD SOUTH

Intersection	Overall Intersection Performance [LOS / Delay]	Notable Movement Performance [Mvmt. / LOS / Delay / v/c Ratio / 95 ${ }^{\text {th }}$ pctl. Queue]
2022 Existing Conditions		
$34^{\text {th }}$ Street at Patricia Avenue - Two-Way Stop Control	$\begin{gathered} A / 7 \\ (A / 8) \end{gathered}$	All movements LOS C or better, $\mathrm{v} / \mathrm{c}<0.75$ (All movements LOS C or better, v/c < 0.75)
2052 Post-Development Conditions		
$34^{\text {th }}$ Street at Patricia Avenue - Two-Way Stop Control	$\begin{gathered} A / 7 \\ (C / 21) \end{gathered}$	All movements LOS C or better, $\mathrm{v} / \mathrm{c}<0.75$ (SB / F / 56 / 0.90 / 70 m)
Modified Option 1 + Roundabout	$\begin{gathered} A / 6 \\ (A / 8) \end{gathered}$	All movements LOS C or better, $\mathrm{v} / \mathrm{c}<0.75$ (All movements LOS C or better, $\mathrm{v} / \mathrm{c}<0.75$)
Modified Option 2 + Traffic Signals	$\begin{gathered} A / 9 \\ (B / 13) \end{gathered}$	All movements LOS C or better, $\mathrm{v} / \mathrm{c}<0.75$ (All movements LOS C or better, $\mathrm{v} / \mathrm{c}<0.75$)
$34^{\text {th }}$ Street at Proposed East-West Collector - Two-Way Stop Control	$\begin{gathered} C / 24 \\ (B / 17) \end{gathered}$	$\begin{aligned} & \mathrm{EB} / \mathrm{F} / 53 / 0.89 / 75 \mathrm{~m} \\ & (\mathrm{~EB} / \mathrm{F} / 70 / 0.82 / 45 \mathrm{~m}) \\ & (\mathrm{WB} / \mathrm{E} / 38 / 0.63 / 30 \mathrm{~m}) \end{aligned}$
Modified per Secondary Plan + Roundabout	$\begin{gathered} A / 8 \\ (A / 9) \end{gathered}$	All movements LOS C or better, $\mathrm{v} / \mathrm{c}<0.75$ (All movements LOS C or better, v/c < 0.75)
Patricia Avenue at Proposed Lakeview Dr. Ext. - Two-Way Stop Control	$\begin{gathered} A / 4 \\ (A / 3) \end{gathered}$	All movements LOS C or better, $\mathrm{v} / \mathrm{c}<0.75$ (All movements LOS C or better, v/c < 0.75)
Proposed Lakeview Dr. Ext. at Proposed East-West Collector - Four-Way Stop Control	$\begin{gathered} A / 8 \\ (A / 9) \end{gathered}$	All movements LOS C or better, $\mathrm{v} / \mathrm{c}<0.75$ (All movements LOS C or better, $\mathrm{v} / \mathrm{c}<0.75$)
Modified per Secondary Plan + Roundabout	$\begin{gathered} A / 5 \\ (A / 5) \end{gathered}$	All movements LOS C or better, $\mathrm{v} / \mathrm{c}<0.75$ (All movements LOS C or better, $\mathrm{v} / \mathrm{c}<0.75$)

AM (PM) Analysis Results
The intersection of $34^{\text {th }}$ Street and Patricia Avenue provided acceptable operations in the 2022 existing conditions scenario, but in the 2052 post-development scenario the southbound approach operated at LOS

F in the PM peak hour, with a v / c ratio of 0.90 , indicating that the intersection was nearly at capacity. Further analysis showed that a signal lane roundabout or a traffic signal would provide good performance. In the option with the traffic signal, no turning lanes were required to give good performance.

The intersection of $34^{\text {th }}$ Street and the new east-west collector could not provide acceptable performance without the roundabout identified in the Secondary Plan. The other new intersections in Brookwood South could provide acceptable performance with simple two-way stop-control configurations. Roundabouts would also provide good performance, but they were not required for traffic operations.

Table 11 shows the analysis results from the intersections near Bellafield. Note that the intersection of $26^{\text {th }}$ Street and Maryland Avenue was modeled in the existing staggered configuration for the 2022 existing conditions scenario, but for the 2052 scenario-with $26^{\text {th }}$ Street extended to the south-the intersection was assumed to be re-aligned to a single intersection, with four-way stop control, per the traffic analysis and geometric review noted in Section 2.3. New intersections included in the 2052 scenario were initially modeled with basic two-way stop-controlled configurations (and four-way stop control at the intersection of $26^{\text {th }}$ Street and the new east-west collector), and then modeled with the roundabouts shown in the Secondary Plan.

TABLE 11: TRAFFIC OPERATIONS ANALYSIS RESULTS - BELLAFIELD

Intersection	Overall Intersection Performance [LOS / Delay]	Notable Movement Performance [Mvmt. / LOS / Delay / v/c Ratio / 95 th pctl. Queue]
2022 Existing Conditions		
$26^{\text {th }}$ Street at Durum Drive - Two-Way Stop Control	$\begin{gathered} A / 4 \\ (A / 4) \end{gathered}$	All movements LOS C or better, v/c <0.75 (All movements LOS C or better, v/c < 0.75)
$26^{\text {th }}$ Street (NB) at Maryland Avenue - Two-Way Stop Control	$\begin{gathered} \mathrm{A} / 6 \\ (\mathrm{~A} / 6) \end{gathered}$	All movements LOS C or better, $\mathrm{v} / \mathrm{c}<0.75$ (All movements LOS C or better, v/c < 0.75)
$26^{\text {th }}$ Street (SB) at Maryland Avenue - All-Way Stop Control	$\begin{gathered} A / 9 \\ (A / 9) \end{gathered}$	All movements LOS C or better, $\mathrm{v} / \mathrm{c}<0.75$ (All movements LOS C or better, v/c < 0.75)
2052 Post-Development Conditions		
26 ${ }^{\text {th }}$ Street at Durum Drive - Two-Way Stop Control	$\begin{gathered} A / 3 \\ (A / 4) \end{gathered}$	All movements LOS C or better, v/c < 0.75 (EB / D / 29 / 0.44 / 20 m) (WB / D / 27 / 0.17 / 5 m)
$26^{\text {th }}$ Street at Maryland Avenue - Four-Way Stop Control	$\begin{gathered} D / 31 \\ (F / 99) \end{gathered}$	
Modified per Secondary Plan + Roundabout	$\begin{gathered} B / 11 \\ (C / 16) \end{gathered}$	All movements LOS C or better, $\mathrm{v} / \mathrm{c}<0.75$ (All movements LOS C or better, $\mathrm{v} / \mathrm{c}<0.75$)
Proposed $26^{\text {th }}$ Street Ext. at Proposed East-West Collector - Four-Way Stop Control	$\begin{gathered} \mathrm{B} / 13 \\ (40 / E) \end{gathered}$	All movements LOS C or better, $\mathrm{v} / \mathrm{c}<0.75$ (NB / E/44/0.91 / -*) (SB/F/47/0.94 / -*)
Modified per Secondary Plan + Roundabout	$\begin{gathered} A / 8 \\ (B / 12) \end{gathered}$	All movements LOS C or better, $\mathrm{v} / \mathrm{c}<0.75$ (All movements LOS C or better, $\mathrm{v} / \mathrm{c}<0.75$)
Proposed 26 ${ }^{\text {th }}$ Street Ext. at Patricia Avenue -Two-Way Stop Control	$\begin{aligned} & \mathrm{B} / 10 \\ & \text { (Error) } \end{aligned}$	$\begin{aligned} & \text { SB / D / } 29 \text { / } 0.58 / 25 \mathrm{~m} \\ & \text { (SB / Error) } \end{aligned}$
Modified per Secondary Plan + Roundabout	$\begin{gathered} A / 8 \\ (C / 24) \end{gathered}$	All movements LOS C or better, $\mathrm{v} / \mathrm{c}<0.75$ (WB / D / 30 / 0.91 / 100 m)
Modified Option 2 + Roundabout + Westbound Right-Turn Lane	(B / 13)	(All movements LOS C or better, v/c < 0.75)

AM (PM) Analysis Results

* HCM 2000 Methodology does not include queue estimates for four-way stop controlled intersections

In the 2022 existing conditions scenario the intersections on $26^{\text {th }}$ Street provided acceptable performance, with all movements operating at LOS C or better and with v/c ratios not exceeding 0.75 .

In the 2052 post-development scenario the four-way stop control intersection at $26^{\text {th }}$ Street and Maryland Avenue was nearing capacity in the AM peak hour, and over capacity in the PM peak hour, with the northbound and southbound movements operating at LOS F, with v / c ratios of more than 1.00 . The roundabout identified in the Secondary Plan provided good performance, allowing all movements to operate at LOS C or better and have v / c ratios below 0.75 .

The intersections on the $26^{\text {th }}$ Street extension-at the new east-west collector and at Patricia Avenuerequired roundabouts for good traffic operations performance. At the new east-west collector intersection four-way stop control had the southbound movements operating at LOS F in the PM peak hour, with a v/c ratio of 0.97-nearly at capacity. The intersection on Patricia Avenue had extreme delays in the PM peak hour with two-way stop control, such that Synchro returned errors. Roundabouts at both intersections eliminated nearly all performance issues, except for westbound queueing and near-capacity issues on Patricia Avenue in the PM peak hour. Those issues could be resolved with the addition of a westbound right-turn lane.

Table 12 shows the analysis results from the study intersections near the Annex Lands. Like the other intersections, new intersections near the Annex Lands were initially modeled with two-way stop control configurations, and then modeled with modifications identified in the Secondary Plan. In this case, those modifications were traffic signal control. The study team also investigated the performance of roundabouts as an alternative method of control that is more consistent with safe systems principles (see Section 4.3).

TABLE 12: TRAFFIC OPERATIONS ANALYSIS RESULTS - ANNEX LANDS

Intersection	Overall Intersection Performance [LOS / Delay]	Notable Movement Performance [Mvmt. / LOS / Delay / v/c Ratio / 95 ${ }^{\text {th }}$ pctl. Queue]
2022 Existing Conditions		
Patricia Avenue at Brentwood Trace - Two-Way Stop Control	$\begin{gathered} A / 2 \\ (A / 2) \end{gathered}$	All movements LOS C or better, $\mathrm{v} / \mathrm{c}<0.75$ (All movements LOS C or better, $\mathrm{v} / \mathrm{c}<0.75$)
$18^{\text {th }}$ Street at Patricia Avenue - Two-Way Stop Control	$\begin{gathered} A / 5 \\ (A / 6) \end{gathered}$	All movements LOS C or better, $\mathrm{v} / \mathrm{c}<0.75$ (EB / D / 27 / 0.39 / 15 m)
2052 Post-Development Conditions		
Patricia Avenue at Brentwood Trace - Two-Way Stop Control	$\begin{gathered} A / 1 \\ (A / 1) \end{gathered}$	All movements LOS C or better, $\mathrm{v} / \mathrm{c}<0.75$ (SB / E/49 / 0.22 / 5 m)
Patricia Avenue at Proposed Commercial Access - Two-Way Stop Control	$\begin{gathered} A / 6 \\ \text { (Error) } \end{gathered}$	All movements LOS C or better, v/c <0.75 (NB / Error)
Modified per Secondary Plan + Traffic Signals	$\begin{gathered} C / 21 \\ (D / 36) \end{gathered}$	WBL / D / 40 / 0.46 / 20 m NBL / D / 40 / 0.25 / 35 m (WBL / D / 44 / 0.77 / 60 m) (NBL / D / 48 / 0.89 / 170 m)
Modified Alternate + Roundabout w/ Slip Lanes	$\begin{gathered} A / 6 \\ (B / 13) \end{gathered}$	All movements LOS C or better, v/c < 0.75 (All movements LOS C or better, $\mathrm{v} / \mathrm{c}<0.75$)
$18^{\text {th }}$ Street at Patricia Avenue - Two-Way Stop Control	Error (Error)	EB / Error WB / Error (EB / Error) (WB / Error)
Modified per Secondary Plan + Traffic Signals	$\begin{gathered} C / 24 \\ \text { (C / 28) } \end{gathered}$	EBL / D / 44 / 0.72 / 50 m + 5 Other Movements LOS D/E (EBL / D/54 / 0.92 / 115 m) (+ 2 Other Movements LOS E)
Modified Alternate + Two Lane Roundabout	$\begin{gathered} A / 8 \\ (D / 31) \end{gathered}$	All movements LOS C or better, $\mathrm{v} / \mathrm{c}<0.75$ (SBT/R / F / 51 / 0.95 / 100 m) (+ 3 Other Movements LOS D/E)

Intersection	Overall Intersection Performance [LOS / Delay]	Notable Movement Performance [Mvmt. / LOS / Delay / v/c Ratio / 95 ${ }^{\text {th }}$ pctl. Queue]
$18^{\text {th }}$ Street at Proposed Commercial Access - Two-Way Stop Control	A/ 4 (Error)	All movements LOS C or better, v/c <0.75 (EB / Error)
Modified per Secondary Plan + Traffic Signals	$\begin{gathered} B / 14 \\ (C / 21) \end{gathered}$	$\begin{aligned} & \text { EBL / D / } 56 / 0.58 / 40 \mathrm{~m} \\ & \text { NBL / E / } 57 / 0.43 / 25 \mathrm{~m} \\ & (E B L / D / 54 / 0.80 / 100 \mathrm{~m}) \\ & (N B L / E / 56 / 0.59 / 40 \mathrm{~m}) \end{aligned}$
Modified Alternate + Two Lane Roundabout	$\begin{gathered} A / 5 \\ (A / 9) \end{gathered}$	All movements LOS C or better, v/c <0.75 (All movements LOS C or better, v/c <0.75)

AM (PM) Analysis Results
In the 2022 existing conditions scenario the existing intersections on Patricia Avenue at Brentwood Trace and at $18^{\text {th }}$ Street gave good performance, with all movements operating at LOS C or better, except for the eastbound movements at Patricia Avenue in the PM peak hour; those movements operated at LOS D in the PM peak hour.

In the 2052 post-development scenario the intersection of Patricia Avenue and Brentwood Trace continued to provide good performance in its existing configuration, but the southbound approach operated at LOS E in the PM peak hour. The v/c ratio was still low (0.22), so capacity was still available. The study team considered that performance to be acceptable.

At the proposed commercial access on Patricia Avenue a signalized intersection provided good performance, allowing all movements to operate at LOS D or better. The study team assumed that the fourlane section on Patricia Avenue would carry to the intersection, based on the daily traffic volume presented in Section 4.3. The intersection was modeled in coordination with the signal at $18^{\text {th }}$ Street, with a 120 second cycle length. The study team also included dual westbound left-turn lanes and an eastbound rightturn lane at the intersection. Figure 32 illustrates the intersection layout.

The study team also modeled the intersection with a roundabout, as an alternative that may be more consistent with the safe systems principles noted in Section 4.3. The resulting design included a single lane roundabout plus a westbound bypass lane, a northbound right-turn lane (making use of the four lane sections on the south and east legs), and an eastbound right-turn lane. That alternative allowed all movements to operate at LOS C or better—better performance than the signalized intersection alternative.

At $18^{\text {th }}$ Street and Patricia Avenue the existing intersection was well over capacity, as indicated by Synchro returning errors. The Secondary Plan identified traffic signals as a potential traffic control treatment. The study team assumed a four-lane section on $18^{\text {th }}$ Street and on Patricia Avenue west of $18^{\text {th }}$ Street, consistent with the findings from Section 4.3, and added turn lanes as required. The final signalized intersection configuration is shown on Figure 32.

Note that the intersection includes left-turn lanes and right-turn lanes in all directions, with continuous right-turn lanes on the west leg. That intersection configuration offered better performance, although
movements were nearing capacity in the PM peak hour, with v/c ratios of up to 0.92 . The study team also modeled intersection performance with a roundabout with two lanes on $18^{\text {th }}$ Street and one lane on Patricia Avenue, and found that it provided somewhat worse delays, with movements nearly at capacity.

At the proposed commercial access on $18^{\text {th }}$ Street a signalized intersection provided good performance, with all movements operating at LOS D or better (except for several movements where delays just crossed the LOS D/E threshold), and with v / c ratios not exceeding 0.80 . That intersection included a northbound left-turn lane, a southbound right-turn lane, and a two lane eastbound approach. Figure 32 shows the intersection.

At the three intersections shown in Figure 32, traffic signals or roundabouts could provide reasonably good performance for the 2052 post-development scenario. The study team considered that compared to traffic signals, single lane roundabouts were more consistent with the Safe Systems principles listed in Section 4.3, because they both reduce the number of conflict points and their deflection physically limits vehicle speeds at those conflict points. Two lane roundabouts have less of an advantage over traffic signals: they retain some speed limiting properties, but their deflection is less effective due to the geometry required to support multi-lane travel. Similarly, two lane roundabouts have more conflict points than single lane roundabouts.

With that in mind, the study team judged that the single lane roundabout alternative was preferable at the proposed commercial access on Patricia Avenue. On $18^{\text {th }}$ Street, the study team concluded that traffic signals were the best alternative, given their superior traffic performance vs the two lane roundabout option, and consistency with the rest of the $18^{\text {th }}$ Street corridor. Those points would also apply to the proposed commercial access on $18{ }^{\text {th }}$ Street.

FIGURE 32: ANNEX LAND SIGNALIZED INTERSECTION CONFIGURATIONS

4.6.4 Summary

The traffic operations analyses found that the following treatments would be required for the 2052 postdevelopment scenario:

- Lakeview Drive Extension at the Proposed East-West Collector

A single-lane roundabout (not required for traffic operations, but appropriate for Safe Systems and consistent with Secondary Plan expectation)

- $34^{\text {th }}$ Street at Aberdeen Avenue

A single-lane roundabout

- $34^{\text {th }}$ Street at the Proposed East-West Collector

A single-lane roundabout

- $34^{\text {th }}$ Street at Patricia Avenue

A single-lane roundabout

- $26^{\text {th }}$ Street at Maryland Avenue

A single-lane roundabout

- $26^{\text {th }}$ Street Extension at the Proposed East-West Collector

A single-lane roundabout

- $26^{\text {th }}$ Street Extension at Patricia Avenue

A single-lane roundabout plus a westbound right-turn lane

- Patricia Avenue at the Proposed Commercial Access

A single-lane roundabout plus a westbound bypass lane and northbound and eastbound rightturn lanes

- Patricia Avenue at $18^{\text {th }}$ Street

Traffic signal control plus turning lanes (see Figure 32).

- $18^{\text {th }}$ Street at the Proposed Commercial Access

Traffic signal control plus turning lanes (see Figure 32).

4.7 Traffic Signal Warrant Analysis

The study team conducted Traffic Signal Warrant Analyses (TSWAs) using the process from the TAC Traffic Signal and Pedestrian Signal Head Warrant Handbook. The analysis was conducted for each study intersection that was not already controlled by a roundabout. The analyses began with the 2052 postdevelopment scenario. Where traffic signal control was found to be warranted, the study team conducted additional analysis for the 2022 background scenario to identify whether the need for signals was already present, or if it was driven by development traffic.

Warrants used traffic volumes from the peak six hours of the day, which were estimated using the relationship between the AM and PM peak hours-the focus of the traffic volumes in Section 3 and the
$85 \mid P$ a g e

SOUTHWEST BRANDON SECONDARY PLAN AREA TRAFFIC IMPACT STUDY
 4. Functional Requirements

peak six hours from available intersection turning movement counts. Where a count was not available for an intersection, an expansion factor was used from a similar intersection. All counts showed expansion factors between 2.09 and 2.48 , representing the sum of the peak six-hour traffic divided by the sum of the AM and PM peak hour traffic.

The TSWA process also considers pedestrian crossing volumes. Those were set to 15 crossings per hour at intersections along the proposed east-west collector street and at $26^{\text {th }}$ Street and Maryland Avenuelocations likely to see significant pedestrian activity.

Table 13 shows the warrant points returned from the analyses. Note that scores of 100 or more indicate that traffic signals are warranted. Note that the analysis also includes a minimum volume threshold for the minor street-where the minor street has fewer than 75 vehicles per hour (vph) making left-turns and through movements, signals are considered not warranted, regardless of warrant points. Analyses with minor street traffic below the 75 vph threshold are noted with an asterisk.

TABLE 13: TRAFFIC SIGNAL WARRANT ANALYSIS RESULTS

Intersection	Warrant Points 2022 Background	Warrant Points 2052 Post- Development
Richmond Avenue \& Brookwood Drive	Not Warranted	11^{*}
$34^{\text {th }}$ Street \& Aberdeen Avenue	N/A	80
$34^{\text {th }}$ Street \& Proposed East-West Collector	Not Warranted	84
$34^{\text {th }}$ Street \& Patricia Avenue	N/A	42
Lakeview Drive \& Proposed East-West Collector	Not Warranted	13^{*}
Lakeview Drive \& Patricia Avenue	N/A	6
$26^{\text {th }}$ Street \& Durum Drive	N/A	51^{*}
$26^{\text {th }}$ Street \& Maryland Avenue	138	
$26^{\text {th }}$ Street \& Proposed East-West Collector	Not Warranted	82
$26^{\text {th }}$ Street \& Patricia Avenue	N/A	117
Patricia Avenue \& Brentwood Trace	57	47^{*}
Patricia Avenue \& Proposed Commercial Access	N/A	211
$18^{\text {th }}$ Street \& Patricia Avenue	436	
$18^{\text {th }}$ Street \& Proposed Commercial Access	132	

* Minor street volume below 75 vph threshold, signals not warranted

The TSWAs indicated that in the 2052 post-development traffic signals were warranted on $26^{\text {th }}$ Street at Maryland Avenue and at Patricia Avenue, and at the three intersections around the Annex Lands: the commercial accesses on Patricia Avenue and on $18^{\text {th }}$ Street, and at the intersection of $18^{\text {th }}$ Street and Patricia Avenue. Those intersections either did not exist or did not warrant signalization in the 2022 background scenario, indicating that development traffic was the main driver of the need for signalization.

The traffic operations analysis found that signals were also required to provide good peak hour operations on $34^{\text {th }}$ Street at Aberdeen Avenue, the proposed east-west collector street, and at Patricia Avenue. Similar performance was noted on $26^{\text {th }}$ Street at the proposed east-west collector street-all intersections that returned fewer than 100 warrant points. The lack of agreement between the traffic operations results and the TSWAs illustrates the difference in methodology between the methods: one is focused on detailed performance at critical times, while the other-the TSWAs-consider potential conflicts averaged over a longer time period. In this case, the study team considered the more detailed traffic operations analyses as an indication that stop control was insufficient at those intersections.

Note that the warrant primarily indicates where stop control is insufficient, and they do not necessarily indicate that traffic signal control is optimal. At those intersections roundabouts can also be appropriate means of traffic control.

Traffic signal warrant analysis reports are included in Appendix D.

4.8 Pedestrian Crossing Control Analysis

The study team reviewed the need for pedestrian crossing control using guidance from the Transportation Association of Canada (TAC) Pedestrian Crossing Control Guide, $3^{\text {rd }}$ Edition (PCCG). The PCCG includes guidance on identifying locations for pedestrian crossing control and selecting appropriate control types at candidate locations.

The study team reviewed all locations where paths proposed in the Secondary Plan or identified in earlier sections of this TIS crossed collector or arterial streets. Many of the paths are on-street paths that would cross at intersections. Crossing control analyses were not completed for intersections with identified recommendations for roundabouts or traffic signals per the traffic operations analysis in Section 4.6 , since those methods of intersection control would include some provision for pedestrian crossing control.

Figure 33 shows the locations considered in the analysis. The figure includes relevant features from analyses noted in the preceding sections, including new collector street connections and AT path alignments and intersection traffic control.

FIGURE 33: PEDESTRIAN CROSSING CONTROL ANALYSIS LOCATIONS
For each location shown in Figure 33, the study team used the PCCG to determine if the location should be a candidate for crossing control, and if so, what form of control would be most appropriate.

The following points summarize the findings from the analysis:

- Nearly all the sites can be considered candidates for pedestrian crossing control, except for Brookwood Drive south of Richmond Avenue, and Lakeview Drive at Plateau Drive. Those
locations were not critical for system connectivity, which was the key factor that made the other locations candidates for crossing control.
- The PCCG treatment selection matrix indicated that Ground Mounted signs were appropriate treatments for all the candidate locations. Enhanced crossings were appropriate for three of the locations: Richmond Avenue west of Brookwood Drive, Richmond Avenue west of $34^{\text {th }}$ Street, $34^{\text {th }}$ Street south of Aberdeen Avenue. According to the PCCG, enhanced crossings should include zebra crosswalk pavement markings (as opposed to twin parallel line markings) and (ideally) additional overhead crossing signage.
- The PCCG provides flexibility for practitioners to select higher-level treatments based on location characteristics. In the study team's judgement, the crossing on $34^{\text {th }}$ Street south of Aberdeen Avenue should have an RRFB as higher-tier crossing treatment. This judgement is due to the relatively high traffic volume forecast on $34^{\text {th }}$ Street, the significance of the crossing in the AT network, and the lack of edge friction on $34^{\text {th }}$ Street, which made lead to higher vehicle speeds.

4.9 Sensitivity Analysis

The sensitivity analysis considered:

- Need for treatments at the interim horizon years. This allowed the study team to identify the level of development that would trigger the need for any recommended treatments. This review also considered requirements for access during construction.
- Treatment robustness against changes in traffic volumes representing different levels of development, including a scenario representing development at the higher end of potential demand forecast by the City of Brandon, increased demand for travel to/from the south on $34^{\text {th }}$ Street representing a future PTH 110 extension and connection to $34^{\text {th }}$ Street, and a scenario with the BSD school near the intersection of $26^{\text {th }}$ Street and Maryland Avenue instead of in Brookwood South.

The following sections outline the considerations and findings for each part of the sensitivity analysis.

4.9.1 Triggers

The study team identified triggers for each recommended treatment, as well as the collector street and AT path segments in the study area. Triggers were tied to:

- Access to developing areas. In some cases, development of an area triggered the need for infrastructure, such as a collector street access to an arterial street.
- Construction access. In some cases, it would be advantageous to have an additional access to the arterial street network to allow construction traffic to be separated from general traffic.
- Construction staging. This was particularly relevant for roundabouts. Converting an existing traditional intersection to a roundabout requires complex traffic staging. Staging difficulty and
impacts on traffic increase as traffic volumes increase, so in some cases it would be preferable to construct a roundabout before it is required for traffic operations.
- Impact on other neighbourhoods. Some street connections were needed to avoid routing too much new development traffic onto local and collector streets in other neighbourhoods.
- Presence of schools. Some active transportation and traffic calming treatments can be deferred until future schools are developed.
- Capacity. This applied to the signalized intersections and widening on $18^{\text {th }}$ Street and Patricia Avenue. Those treatments were not required for development access, construction access, or to avoid impacts on other neighbourhoods, so their triggers were tied directly to traffic operations. This required additional traffic operations analysis. Capacity was also considered for the extension of $26^{\text {th }}$ Street and the roundabout at Maryland Avenue. Capacity analyses found that the roundabout and street extension could be deferred until required for development access, without unacceptable traffic operations. Analysis reports are included in Appendix E.
- Speed Studies. Traffic calming on Durum Drive, Maryland Avenue, and Derlago Drive (Marquis Drive) was tied to the need for speed studies to better understand the nature of any collector street speed issues. Those studies can be conducted on an on-going basis and/or as complaints are received.
- External Development. Connections to areas west or south of the SPA would only be required once those areas develop, which is forecast to be beyond the 2052 study horizon.

The City of Brandon provided data on forecast development absorption in the study area, plus direction on which areas would likely develop earlier or later in the 2022 to 2052 study period. The study team used this information to assign a level of development progress in the analysis zones from Section 3.3, at each of the interim horizon years (2027, 2032, 2037, 2042, 2047). This allowed the study team to identify forecast horizon years for each of the triggers. Figure 8 from Section 3.3.4 is included below for reference.

FIGURE 8: ANALYSIS ZONES (FROM SECTION 3.3.4)
Table 14 through Table 16 present the list of triggers and forecast horizon years, along with rationale for each trigger. Figure 34 through Figure 38 illustrate the forecast development progress and required treatments at the 2027, 2032, 2037, and 2042 horizon years. Note that all the recommended treatments were forecast to be required by 2042, so there were no triggers for the 2047 interim year. Further, treatments with triggers related to speed studies or external development were not assigned a forecast horizon year.

TABLE 14: TRIGGERS - COLLECTOR STREETS, ARTERIAL ROADS, AND EXTERNAL CONNECTIONS

Item	Trigger	Forecast Horizon	Trigger Rationale
Collector Streets			
Brookwood South - Connection to Lakeview Drive	Start of Zone B Development	2027	Required to provide access to Zone B Area
Brookwood South - Connection to Plateau Drive	Start of Zone B Development	2027	Required for second point of access to Zone B
Brookwood South - Connection to 34th Street	Zone B $>25 \%$ Development (75 units)	2027	Provide an outlet for Zone B to prevent more than 500 vpd additional on Plateau Drive
Brookwood South - Connection to Patricia Avenue	Brookwood South Phase 2 Development	2032	Required for convenience and construction access, not capacity.
Lakeview Drive Extension - North Portion	Brookwood South Phase 4 Development	2042	Required for convenience and construction access for Phase 4, not capacity.
Lakeview Drive Extension - South Portion	Brookwood South Phase 2 Development	2032	Required for convenience and construction access, not capacity.
Proposed East-West Collector - Brookwood South	Zone B >25\% Development	2027	Provide an outlet for Zone B to prevent more than 500 vpd additional on Plateau Drive
Bellafield - 26th Street Extension	Start of Zone F Development	2032	Provide access to Zone F
Bellafield - Connection to 34th Street	Start of Zone D Development	2027	Construction Access for Zone D - formalize to proper street when roundabout constructed
Bellafield - Connection to Patricia Avenue	Start of Zone F Development	2032	Access to Zone F, provide second access for construction
Proposed East-West Collector - Bellafield	Start of Zone E Development	2037	Provide access to Zone E
Annex Lands - Residential Connection to Patricia	Start of Zone G Residential Development	2027	Provide access to Annex Lands
Annex Lands - Commercial Connection to Patricia	Start of Zone G Commercial Development	2027	Provide Access to Annex Lands
Annex Lands - Commercial Connection to 18th Street	Need for Improvements at 18th \& Patricia	2027	Can't include without improvements to $18^{\text {th }}$ Street, wait for improvements at Patricia
Annex Lands Residential Collector	With residential development in Zone G	2027-42	Provide as required for residential development
Annex Lands Internal Commercial Collectors	With commercial development in Zone G	2027-42	Provide as required for commercial development
Arterial Roads			
Patricia Ave Paving - Brentwood Trace to 26th Street	Start of Zone G Residential Development	2027	Provide paved surface to Annex Lands connection at 26th Street
Patricia Ave Paving - 26th Street to 34th Street	Zone G 50\% Comm. Development (320,000 ft^{2})	2027	Forecast ADT 3500 vpd vs 1000 vpd existing
Patricia Ave Paving - 34th Street to West	Brookwood South Phase 2 Development	2032	Provide paved surface to Brookwood South Connection to Patricia
Patricia Ave Widening	Need for Improvements at 18th \& Patricia	2027	Include with improvements at 18th Street and Patricia Avenue
18th Street Widening	Need for Improvements at 18th \& Patricia	2027	Include with improvements at 18th Street and Patricia Avenue
External Street Connections			
Brookwood South to West	Future External Development	N/A	Not required until development to west of SPA
Brookwood South to South	Future External Development	N/A	Not required until development to south of SPA
Bellafield to South	Future External Development	N/A	Not required until development to south of SPA
Bellafield to Brentwood Village	Start of Zone F Development	2032	Include with $26^{\text {th }}$ Street extension
Annex Lands to West	Future External Development	N/A	Not required until development to south of SPA

TABLE 15: TRIGGERS - INTERSECTIONS AND TRAFFIC CALMING

Item	Trigger	Forecast Horizon	Trigger Rationale
Intersections			
34th Street \& Aberdeen Avenue Roundabout	As soon as possible	2022	Construction staging will be easier with less traffic
Aberdeen Avenue \& Durum Drive	As soon as possible	2022	Construct as part of roundabout project at $34^{\text {th }}$ Street
34th Street \& Proposed Collector Roundabout	Zone B >25\% Development (75 units)	2027	Construct as part of collector street connection
34th Street \& Patricia Avenue Roundabout	Zone G 50\% Comm. Development (320,000 ft²)	2027	Include as part of paving on Patricia Avenue to the east
Lakeview Drive \& Proposed Collector Roundabout	Brookwood South Phase 2 Development	2032	Include with south portion of Lakeview Drive
26th Street \& Maryland Avenue Roundabout	Start of Zone F Development	2032	Include with 26th Street Extension
26th Street \& Proposed Collector Roundabout	Start of Zone F Development	2032	Include with 26th Street Extension
26th Street \& Patricia Avenue Roundabout	Start of Zone G Development	2027	Include with Annex Lands access
Patricia Avenue Commercial Access Roundabout	Start of Zone G Development	2027	Include with Annex Lands access
18th Street \& Patricia Avenue Signals + Turn Lanes	Need for Improvements at 18th \& Patricia	2027	Traffic operations performance at 18th Street and Patricia Avenue
18th Street Commercial Access Signals + Turn Lanes	Need for Improvements at 18th \& Patricia	2027	Include with improvements at 18th Street and Patricia Avenue
Traffic Calming			
Plateau Drive Curb Extensions and Speed Cushions	Start of Zone B Development	2022	Minimize impact of development traffic
Durum Drive Curb Extensions	As soon as possible	2022	Reduce pavement clear width
Durum Drive Curb Speed Cushions	Monitor Speeds	N/A	Understand nature of speed problems before implementing calming measures
Derlago Drive / Marquis Drive Speed Cushions	Monitor Speeds	N/A	Understand nature of speed problems before implementing calming measures
Maryland Avenue Speed Cushions	Monitor Speeds	N/A	Understand nature of speed problems before implementing calming measures

TABLE 16: TRIGGERS - ACTIVE TRANSPORTATION AND TRANSIT

Item	Trigger	Forecast Horizon	Trigger Rationale
Active Transportation - Paths			
Brookwood South - West of Lakeview	Brookwood South Phase 2 Development	2032	Proceed with development of collector street and local street network
Brookwood South - Connection to 34th Street	Zone B >25\% Development (75 units)	2027	Wait for some demand from Brookwood South
Brookwood South - 34th Street	Zone $\mathrm{B} \times 25 \%$ Development (75 units)	2027	Proceed with development in Zone B and Zone C, path along collector
Brookwood South - Proposed East-West Collector	Zone B $>25 \%$ Development (75 units)	2027	Proceed with development of collector street network
Brookwood South - Patricia Avenue	Brookwood South Phase 2 Development	2032	Wait for development to start reaching the south end of the SPA
Bellafield - Maryland Avenue ROW Connect to 34th	Zone B $>25 \%$ Development (75 units)	2027	Wait for some demand from Brookwood South
Bellafield - Maryland Avenue ROW Zone J	Zone J Local Streets	2022	Proceed with local streets in Zone J
Bellafield - West of Derlago (Marquis) Drive	Zone D Local Streets	2027	Proceed with development of local street network
Bellafield - Park Area	Start of Zone F Development	2032	Proceed with development of local street network
Bellafield - Proposed East-West Collector	Start of Zone E Development	2037	Proceed with development of collector street network
Bellafield - 26th Street Extension	Start of Zone F Development	2032	Proceed with development of collector street network
Bellafield - Patricia Avenue	Patricia Avenue Paving	2027	Include as part of Patricia Avenue paving
Paths around DSFM School	Completion of DSFM School	2027	Wait for school
Annex Lands - Proposed Residential Collector	With development in Zone G	2027	Proceed with development of collector street network
Annex Lands - Internal	With development in Zone G	2027	Proceed with development of collector street network
Annex Lands - Patricia Avenue Commercial Access	With development in Zone G	2027	Proceed with development of collector street network
Annex Lands - 18th Street Commercial Access	With development in Zone G	2027	Proceed with development of collector street network
Active Transportation - Crossings			
Richmond Avenue West of 34th Street	Existing desire line	2022	Warrant for crossing under existing conditions
34th Street south of Aberdeen Avenue	Zone B $>25 \%$ Development (75 units)	2027	Construct as part of corridor connecting Brookwood South and Bellafield
Brookwood South - Lakeview Drive north	Brookwood South Phase 4 Development	2042	Include in initial construction
Brookwood South - Proposed Collector at Plateau Drive (Raised)	BSD School	2042	Wait for school
Bellafield - 26th Street at Connection to Brentwood Village (Raised)	Start of Zone F Development	2032	Include in initial construction
Bellafield - 26 th Street at Connection to DSFM School	Start of Zone F Development	2032	Wait for school
Maryland Avenue at Connection to DSFM School	Completion of DSFM School	2027	Include in initial construction
Annex Lands - Patricia Avenue Commercial Access at Internal Collector	With development in Zone G	2027	Include in initial construction
Transit			
Service to Brookwood South	Brookwood South Phase 4 Development	2042	Wait until collector network in place, substantial demand
Service to Bellafield	Start of Zone E Development	2037	Wait until collector network in place, substantial demand

FIGURE 34: RECOMMENDED INFRASTRUCTURE TRIGGERED IN 2022

FIGURE 35: RECOMMENDED INFRASTRUCTURE TRIGGERED IN 2027

FIGURE 36: RECOMMENDED INFRASTRUCTURE TRIGGERED IN 2032

FIGURE 37: RECOMMENDED INFRASTRUCTURE TRIGGERED IN 2037

FIGURE 38: RECOMMENDED INFRASTRUCTURE TRIGGERED IN 2042

4.9.2 Funding

Funding considerations were identified based on the study team's understanding of the factors creating the need for each recommended component of the transportation infrastructure. The following points summarize the funding considerations:

- Much of the infrastructure was required simply to provide access to the SPA. As such, that infrastructure was assessed 100% to development funding. That applied to all proposed collector streets and active transportation paths and crossings (except one crossing), and the recommended future transit stops and service.
- The only recommended infrastructure required solely based on background conditions was a pedestrian crossing on Richmond Avenue west of $34^{\text {th }}$ Street, where existing path connections create a desire line that development in the SPA does not influence significantly.
- Recommended infrastructure related to traffic capacity was assessed based on the share of development and background traffic forecast to drive the need for the infrastructure, using volumes from the 2052 post-development scenario. Splits ranged from 75\% background traffic driven (resolving existing wide pavement issues at Aberdeen Avenue and Durum Drive), to 95\% development-driven (improvements to Patricia Avenue).

Appendix E includes a table showing the assessed background and development splits, with rationale.

4.9.3 Robustness

The study team tested the robustness of the recommended intersection treatment in terms of capacity to accommodate future traffic growth, in four scenarios:

1. A "maximum density" development scenario, using the "maximum development quantity" unit counts from Table 1 in Section 2.2.
2. A scenario with the BSD School located northeast of the intersection of $26^{\text {th }}$ Street and Maryland Avenue, instead of in Brookwood South.
3. A scenario to test the capacity of $34^{\text {th }}$ Street to accommodate increased traffic volumes, representing a future scenario with PTH 110 extended west and connected to $34^{\text {th }}$ Street.
4. A scenario with Maryland Avenue extended from Marquis Drive to $34^{\text {th }}$ Street.

The study team estimated traffic volumes for each scenario, and found:

- Development at the maximum density would increase the residential unit count by approximately 4%, and the commercial floor area by approximately 9%. These increases had only a marginal effect on traffic volumes, and did not result in any substantial changes in intersection performance in the 2052 post-development scenario.
- If the BSD school were relocated to the northeast quadrant at $26^{\text {th }}$ Street and Maryland Avenue, the roundabout at that intersection would perform somewhat worse in the 2052 post-
development AM peak hour, with overall intersection delay degrading from 11 seconds (in the base 2052 post-development scenario) to 18 seconds, and performance on the northbound approach would degrade from LOS B to LOS D, with the v/c ratio increasing from 0.61 to 0.83 . This indicates that the school would use up some of the unused capacity at the roundabout, but the roundabout would still provide acceptable operations. Synchro traffic analysis reports are included in Appendix E. Additionally, the presence of the school may increase demand for pedestrian crossings at the intersection, which may create a need for higher-order crossing control, such as rectangular rapid flashing beacon control. That can be assessed in the future when vehicle and crossing volumes can be assessed empirically rather than using projections.
- Volumes on $34^{\text {th }}$ Street could be increased by approximately 500 vph in each direction before reaching capacity at the proposed roundabout at Patricia Avenue. The resulting through volume on $34^{\text {th }}$ Street at the roundabout would be similar to the forecast volumes on $18^{\text {th }}$ Street at Patricia Avenue for the 2052 post-development scenario.
- It is not necessary to extend Maryland Avenue from Marquis Drive to $34^{\text {th }}$ Street for transportation system capacity. The other arterial roads and collector streets in the study area have sufficient capacity to accommodate the forecast traffic volumes from development in the SPA, without a Maryland Avenue extension.

However, a Maryland Avenue extension would provide an east-west route between $26^{\text {th }}$ Street and $34^{\text {th }}$ Street, parallel to-and more direct than - Durum Drive, which may help to reduce traffic volumes on that street. Figure 18 in Section 4.2 .3 shows an estimated 700 vehicles per day added to Durum Drive and Aberdeen Avenue between $34^{\text {th }}$ Street and Marquis Drive. A Maryland Avenue extension may result in nearly all that traffic re-routing off Durum Drive, giving a forecast 2052 post-development volume of 1,300 to 1,500 vehicles per day (vpd) rather than the 2,000 vpd in the base forecast.

Further, Maryland Avenue could be extended west of $34^{\text {th }}$ Street to provide an additional connection between Brookwood South and $34^{\text {th }}$ Street, which may reduce traffic volumes on Plateau Drive.

A Maryland Avenue extension could therefore be considered as an option to address neighbourhood traffic concerns. However, the extension would likely be much more expensive than the curb extensions and speed cushions noted in Section 4.3.2. As such, the extension should only be considered if traffic calming interventions fail to alleviate current volume and speed issues on Durum Drive and if the net cost-benefit of the extension is acceptable to the city.

The additional analysis indicated that the recommended intersection treatments were robust enough to accommodate development at the maximum density, a change in the location of the BSD School, and significantly increased traffic on $34^{\text {th }}$ Street at Patricia Avenue. A Maryland Avenue extension to $34^{\text {th }}$ Street can be considered as an option to address neighbourhood traffic concerns, although traffic calming methods should be attempted first, as they are likely more cost-effective means of addressing those concerns.

5 CONCEPT DESIGN

Concept design sketches were developed for the intersection traffic control recommendations noted in Section 4.6.4 and illustrated on Figure 11 in Section 4.1. The intent of the sketches was to illustrate approximate right-of-way requirements for the recommended intersection treatments, based on realistic, but conservative (larger) geometry. Note that typical right-of-way widths are to be established in Brandon's Municipal Servicing Standards, which were under development at the time this TIS was completed (see Section 2.3). As such, the geometry included in this Section is more representative than definitive. This pertains especially to space required for grading, drainage, and snow storage.

Roundabout geometry was primarily drawn from the National Cooperative Highway Research Program (NCHRP) Report 672: Roundabouts: An Informational Guide (2 ${ }^{\text {nd }}$ Edition) and checked against geometry at the existing roundabouts in Brandon at $34^{\text {th }}$ Street and Richmond Avenue, and at $9^{\text {th }}$ Street and Maryland Avenue. Geometry for signalized intersections was taken from the Transportation Association of Canada (TAC) Geometric Design Guide for Canadian Roads, 2017 (GDG).

General notes on geometry and the approach to the sketches include:

- Roundabouts were drawn with 40 m inscribed diameters. This is a typical minimum value for roundabouts with a WB-20 design vehicle. It is also a typically used value for roundabouts involving collector streets, like many of the recommended roundabouts.
- Splitter islands were drawn 50 m long, representing the painted and raised portion of the island. No attempt was made to illustrate the raised portion of the island-that can be assessed at a more detailed level of design.
- Entry radii were-in most cases-set to 20 m , while exit radii were set to 30 m in most cases. Different values were used when available space did not permit use of these typical values.
- Pedestrian crossings were set back 6 m from the roundabout entries, allowing for storage of one vehicle between the yield line and the crossing.
- Multi-use path and sidewalk locations were set based on the recommended infrastructure on Figure 11. Specific alignments were selected with consideration for utility conflicts and available right-of-way around each intersection. Collector streets were assumed to have sidewalks on both sides, with the sidewalks superseded by multi-use-paths, where present.
- Multi-use paths and sidewalks were offset 3 m from the edge of pavement (where space was available) to provide space for grading and snow storage.
- Multi-use paths and sidewalks were either set to 0.5 m from the edge of right-of-way, or where new right-of-way was required, it was set 0.5 m beyond the edge of the proposed paths and sidewalks.

Notes related to specific locations include:

- The sketch for $34^{\text {th }}$ Street at Aberdeen Avenue (Figure 40) includes the geometry modifications at Aberdeen Avenue and Durum Drive, which involves carrying the 8 m pavement width from near $34^{\text {th }}$ Avenue, through to the intersection at Durum Drive.
- The roundabout at $34^{\text {th }}$ Street was shifted slightly to the west to avoid impacting the property in the southeast quadrant. The entry and exit on the west leg are aligned to the median lanes on Lakeview Drive, with islands providing some channelization.
- The roundabout on $34^{\text {th }}$ Street at the proposed east-west collector street (Figure 39) had its alignment shifted to the south to avoid impacting a property in the northeast quadrant, resulting in a larger requirement from the property in the southeast quadrant. The multi-use path on the west side of $34^{\text {th }}$ Street was set outside of the $34^{\text {th }}$ Street right-of-way, to avoid utility poles.
- The roundabout at $34^{\text {th }}$ Street and Patricia Avenue (Figure 41) was centered on the existing intersection, resulting in small property requirements in the southeast and southwest quadrants. The northeast quadrant was also impacted, as the multi-use path was set on that property to avoid conflicts with utility poles on Patricia Avenue. Impacts on the (undeveloped) properties to the south could be eliminated if the alignment was shifted north, resulting in more impact on the property in the northeast quadrant, currently developed with a single-family home.
- For all locations on Patricia Avenue, multi-use paths were aligned outside of the existing right-of-way to avoid conflicts with utility poles. The drawings show a 3 m wide path, offset 3 m from the existing edge of right-of-way, with another 0.5 m buffer between the outside edge of the path and the proposed edge of right-of-way, for a proposed 6.5 m total property acquisition along Patricia Avenue. The City's typical 9 m "urban reserve" dedication would likely be sufficient, barring unforeseen utility conflicts or severe grading issues.
- The roundabout at $26^{\text {th }}$ Street and Maryland Avenue (Figure 41) could be shifted east to eliminate any property impacts on the west side of $26^{\text {th }}$ Street. Impacts would be limited to the property in the southeast quadrant - which would be impacted solely by the $26^{\text {th }}$ Street re-alignment to correct the skew at Maryland Avenue - and in the northeast quadrant, where approximately 50 m^{2} of property would be required. Property requirements could be further reduced by reducing the buffer space between the edge of the circulatory roadway and the AT paths.
- The westbound bypass lane for the roundabout at the Annex Lands commercial access (Figure 43) was set to continue to the intersection with Brentwood Trace. This would provide approximately 125 m for motorists on the bypass to merge into the lane continuing west of Brentwood Trace. The study team considered that this may create a weaving conflict with vehicles turning right to access Brentwood Trace, however, that forecast 2052 post-development right-turn volume was low (55 vehicles per hour) and many of those vehicles may already be coming from the east and thus using the bypass lane and not contributing to a weaving conflict.
- The roundabout was aligned such that only the bypass lane extended north of the existing north edge of pavement. This was a measure to reduce drainage impacts on the
north side of Patricia Avenue. This increased the impact on the Annex Lands, which was already impacted by the need to accommodate the multi-use path on the south side of Patricia Avenue.
- Similar logic was used for the design at $18^{\text {th }}$ Street and Patricia Avenue (Figure 44), where widening on Patricia Avenue was shifted completely to the south side, into the Annex Lands. Existing all-direction accesses on Patricia Avenue were assumed to become right-in right-out with the advent of a raised median in the four-lane divided section on Patricia Avenue. $18^{\text {th }}$ Street was assumed to be widened about the existing centreline. Any widening on $18^{\text {th }}$ Street would require co-ordination with Manitoba Transportation and Infrastructure (MTI).
- If all widening on Patricia Avenue was located on the south side of the right-of-way, a 9 m "urban reserve" dedication would likely be sufficient for the recommended geometry, assuming that the south side of the street had an urban (covered drainage) section, and barring unforeseen utility conflicts or severe grading issues. Further, the south-side property requirements could be reduced if the widened road was centered in the right-of-way, rather than having all widening on the south side. That would impact drainage on the north side, and it may impact existing street intersections and driveway access to the north.

The sketches are presented on Figure 39 through Figure 45, which make up the remainder of this section.

FIGURE 39: DESIGN SKETCH - PROPOSED EAST-WEST COLLECTOR AT LAKEVIEW DRIVE (LEFT) AND AT 34TH ${ }^{\text {TH }}$ STREET (RIGHT)

FIGURE 40: DESIGN SKETCH - $34^{\text {TH }}$ STREET AT ABERDEEN AVENUE

FIGURE 41: DESIGN SKETCH - $34^{\text {TH }}$ STREET AT PATRICIA AVENUE (LEFT), $26^{\text {TH }}$ STREET AT MARYLAND AVENUE (RIGHT)

FIGURE 42: DESIGN SKETCH - $26^{\text {TH }}$ STREET AT PROPOSED EAST-WEST COLLECTOR (LEFT) AND AT PATRICIA AVENUE (RIGHT)

FIGURE 43: DESIGN SKETCH - PATRICIA AVENUE AT ANNEX LANDS COMMERCIAL ACCESS

FIGURE 45: DESIGN SKETCH - $18^{\text {TH }}$ STREET AT ANNEX LANDS COMMERCIAL ACCESS

6 CONCLUSIONS AND RECOMMENDATIONS

The following points summarize the study team's findings as noted in the preceding Sections:

- Development in the Secondary Plan Area (SPA) is forecast to generate 2,712 trips during the AM peak hour, 4,492 trips during the PM peak hour, and 47,824 daily trips. The big-box commercial land use is forecast to be the largest individual trip generator, accounting for nearly half of the forecast PM peak hour and daily vehicle trip generation.
- The study area is at the edge of Brandon, representing the area that is likely to represent growth in Southwest Brandon through the 2052 study horizon. Additional growth in traffic from development outside of Brandon would likely have a negligible effect on the study area.
- The collector street and active transportation path networks proposed in the Secondary Plan provide good connectivity and coverage in the study area. The active transportation network connectivity could be improved with a controlled crossing at $34^{\text {th }}$ Street near the projection of the Maryland Avenue right-of-way.
- Two lane cross-sections (one lane in each direction) are sufficient for nearly all collector streets and arterial roads in the study area. Four-lane cross sections are forecast to be required on 18th Street through the study area, and on Patricia Avenue from 18th Street to the proposed Annex Lands access approximately 385 m west of 18th Street. Collector streets in the commercial area of the Annex Lands are also forecast to require four lane sections where they meet 18th Street and Patricia Avenue.
- A Safe Systems approach to road safety has several applications to development of transportation infrastructure in the study area. The approach can be used to identify potential safety issues in the study area, including issues related to incompatibility between traffic flow and neighbourhood functions, issues around understandability, and issues around speed.
- Traffic calming treatments including curb extensions, speed cushions, and raised crossings can help to control vehicle speeds and make collector street environments more inviting to people on foot, cycling, or using transit.
- Existing transit service near the study area is focused on Downtown. Existing routes can be extended into the SPA once the collector street network is developed.
- Roundabouts are forecast to be an effective form of traffic control at most of the busier intersections in the study area. However, traffic signals are likely a better method of traffic control for intersections on $18^{\text {th }}$ Street under forecast 2052 post-development conditions.
- Transportation infrastructure found to be required for the forecast 2052 post-development scenarios is robust against a change in location of a future Brandon School Division School and against marginal increases in development density.
- It is not necessary to extend Maryland Avenue from Marquis Drive to $34^{\text {th }}$ Street for transportation system capacity. A Maryland Avenue extension to $34^{\text {th }}$ Street can be considered as an option to address neighbourhood traffic concerns, although traffic calming methods should be attempted first, as they are likely more cost-effective means of addressing those concerns.

The study team offers the following recommendations:

- New collector streets in the study area should generally have 10 m cross-sections, which will provide one lane in each direction, plus a parking lane on one side. Curb extensions should be provided at intersections, to reduce the clear width to as little as 6 m wide, and no more than 7 m wide. Curb extensions can help to limit vehicle speeds by introducing edge friction, define parking areas, and improve visibility for crossing pedestrians.
- A street connection between the south extension of $26^{\text {th }}$ Street and the Brentwood Village neighbourhood should be designed as a collector street, rather than a local street.
- Right of way should be reserved for potential future collector street connections to the west and south of the study area.
- Multi-use paths at 3 m pavement widths should be used for the active transportation network, both for off-street and on-street alignments. When used on collector street alignments, multi-use paths can replace the sidewalk on one side of the street, while the other side should retain a typical sidewalk.
- Implement a controlled pedestrian crossing on $34^{\text {th }}$ Street south of Aberdeen Avenue, along the projection of the Maryland Avenue right of way. Sign-controlled pedestrian crossing should be provided where AT paths cross collector or arterial streets at locations other than roundabout or traffic signal-controlled intersections. Raised crossings should be provided at crossings near schools, except on Maryland Avenue, where the rural cross-section would be less amenable to a raised crossing.
- Add curb extensions on Durum Drive, to reduce the lack of side friction resulting from the wide pavement. This will provide some friction even when parking demand is low.
- Add curb extensions and speed cushions to Plateau Drive, to prevent any speed issues from arising due to the combination of its straight alignment, wide pavement width, and connections to developing areas in Brookwood South.
- Monitor speeds on Durum Drive, Maryland Avenue, and Derlago Drive (Marquis Drive). If speeds are unacceptably high, consider implementing speed cushions as a means of controlling vehicle speeds.
- Develop study area intersections with the geometry illustrated in Section 5.
- Transit routes can be extended to provide service on the south extension of Lakeview Drive and on the $26^{\text {th }}$ Street extension.

Recommendations are summarized on Figure 11, shown below and in Section 4.1.

FIGURE 11: RECOMMENDED TRANSPORTATION INFRASTRUCTURE

LEVEL OF SERVICE

Level of Service (LOS) is defined as a qualitative measure describing operational conditions within a traffic stream, and their perception by motorists and/or passengers.

Highway Capacity Manual Level of Service (HCM LOS)
The 2010 Highway Capacity Manual (HCM) identifies control delay as the primary service measure with LOS determined from the control delay estimate. Control delay is defined as the component of delay that results when a traffic control device causes a lane group to reduce speed or stop; it is measured against the uncontrolled condition.

Six Levels of Service are defined (briefly described below) with LOS A representing the best operating conditions, and LOS F the worst. It should be noted that there is often significant variability in the amount of delay experienced by individual drivers. The LOS criteria for stop-controlled intersections are different than that used for a signalized intersection, this is primarily because of the different driver expectance at these two environments.

LOS A: This level of service describes the highest quality of traffic flow and is referred to as free flow. The approach appears open, turning movements are easily made and drivers have freedom of operation. Control delay is less than 10 seconds/vehicle.

LOS B: This level of service is referred to as a stable flow. Drivers feel somewhat restricted and occasionally may have to wait to complete minor movement. Control delay is $10-15$ seconds/vehicle for unsignalized intersections and $10-20$ seconds/vehicle for signalized intersections.

LOS C: At this level, the operation is stable. Drivers feel more restricted and may have to wait, with queues developing for short periods. Control delay is $15-25$ seconds/vehicle at unsignalized intersection and $20-35$ seconds/vehicle at signalized intersections.

LOS D: At this level, traffic is approaching unstable flow. The motorist experiences increasing restriction and instability of flow. There are substantial delays to approaching vehicles during short peaks within the peak period, but there are enough gaps to lower demand to permit occasional clearance of developing queues and prevent excessive back-ups. Control delay is $25-35$ seconds/vehicle at unsignalized intersections and $35-55$ seconds/vehicle at signalized intersections.

LOS E: At this level, maximum capacity occurs. Long queues of vehicles exist and delays to vehicles may extend. Control delay is $35-50$ seconds/vehicle at unsignalized intersections and $55-$ 80 seconds/vehicle at signalized intersections.

LOS F: At this level of service, the intersection has failed. Capacity of the intersection has been exceeded. Control delay exceeds 50 seconds/vehicle at unsignalized intersections and exceeds 80 seconds/vehicle at signalized intersections.

Intersection Capacity Utilization Level of Service (ICU LOS)

Intersection capacity utilization (ICU) LOS indicates how an intersection is functioning and how much extra capacity is available to handle traffic fluctuations and incidents. The ICU LOS does not predict delay, but it can be used to predict how often an intersection will experience congestion.

Eight Levels of Service are defined (briefly described below) with LOS A representing the best operating conditions, and LOS H the worst. These letter grades are defined as follows:

LOS A: ICU less than 55\% - the intersection has no congestion and can accommodate 40% more traffic on all movements.

LOS B: ICU of 55\% to 64\% - very little congestion and can accommodate 30\% more traffic on all movements.

LOS C: ICU of 64\% to 73\% - very little major congestion and can accommodate 20% more traffic on all movements.

LOS D: ICU of 73% to 82% - has no congestion and can accommodate 10% more traffic on all movements.

LOS E: ICU of 82% to 91% is on the verge of congested conditions.
LOS F: ICU of 91% to 100% indicates the intersection is over capacity and likely experiences congestion periods of $15-60$ consecutive minutes.

LOS G: ICU of 100% to 109% indicates the intersection is over capacity and likely experiences congestion periods of 60-120 consecutive minutes.

LOS H: ICU greater than 109\% indicates the intersection is over capacity and likely experiences congestion periods of more than 120 consecutive minutes.

Leg Counts
Leg Counts

- Missing north leg individual file, have north leg daily

Volume distribution by leg

Leg	AM	AM\%	PM	PM	Daily	Daily\%
East	196	49%	252	49%	2631	48%
South	94	23%	90	18%	1088	20%
West	68	17%	93	18%	950	17%
North	46	11%	75	15%	765	14%

- Estimate splits to turning movements
- Do daily first, because we have volumes for all leg
- Use balanced leg approach and depart volumes
- Then estimate north leg AM and PM

- Use relationship between Daily and AM/PM to estimate AM/PM movement volumes
- Use volumes from before balancing

AM			Daily to AM Factors	
Leg	App. Vol.	Dep. Vol.	App. F	Dep. F
East	47	149	0.033239	0.122432
West	48	20	0.106667	0.04
South	77	17	0.155242	0.028716
North	30	16	0.084034	0.039216
TOTAL	202	202		
	Calculated estimate			
	Manual est	imate		

PM			Daily to PM Factors	
Leg	App. Vol.	Dep. Vol.	App. F	Dep. F
East	168	84	0.118812	0.069022
West	37	56	0.082222	0.112
South	24	66	0.048387	0.111486
North	26	49	0.072829	0.120098
total	255	255		

Final Volumes

Period	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR
AM		1	1	75		28	1	1		1	46	1		15	18	14
PM		1	0	23		27	1	1		1	302					
Daily		20	10	466		332	10	15		15	35	1	420	15	64	55
48	257															

Volume distribution by leg Leg								AM	AM\%	PM	PM	Daily	Dailv\%
East	585	48%	679	48%	6918	36%							
Suuth	448	36%	484	34%	3564	18%							
West	196	16%	252	18%	2631	14%							
North		0%		0%	6303	32%							

Adjust to balance approaching and departing

- Just for daily, don't have north leg for AM or PM

	$\begin{array}{ll}\text { Approach Factor } & 1.01 \\ \text { Depart Factor }\end{array}$

$\begin{array}{ccc}\text { Leg } & \text { Approach } & \text { Depart } \\ \text { East } & 3716 & 3209 \\ \text { West } & 1232 & 1937 \\ \text { South } & 1831 & 1734 \\ \text { North } & 2929 & 3369 \\ \text { TOTAL } & 9708 & 9709\end{array}$
Convert to Movements

- Estimate splits to turning movements
- Do daily first, because we have volumes for all legs
- Use balanced leg approach and depart volumes
-Then estimate north leg AM and PM
Daily Manual estimate

- Use relationship between Daily and AM/PM to estimate AM/PM movement volumes
-Use volumes from before balancing

< set north leg factors to balance total approach and depart
volumes, also similar to average from other legs

Input Needed Formulated	am peak hour																		
Raw Counts																			
${ }^{10}$ In ${ }^{\text {Intersection }}$ (1010 Richmond Ave \& Brookwood Dr	${ }_{2020}{ }_{2022}$	Time	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR	EBU	EBL	EBT	EBR	wBu	WBL	WBT	WBR	$\frac{\text { Total }}{0}$
1020 Richmond Ave \& 34th St	2022																		0
1510 Brookwood Drive at Plateau Drive																			0
2010 Lakeview Drive at Brookwood Drive																			0
2015 Lakeview Drive at Plateau Drive																			0
2020 34th St \& Aberdeen Ave	2021	8:15		5	45.5	3		22.5	57	60		136	21.5	10		3	14.5	53	431
2025 Durum Drive at Aberdeen Avenue																			0
303026 th st \& Durum Dr																			0
4030 Marland Ave \& 26 th St	2021	8:15		9	60	${ }^{41}$		78	34	7		9	26	4		47	35	95	445
5010 Lakeview \& Marylicia																			\bigcirc
																			0
6010 Lakeview \& Patricia Ave																			0
6020 34th St \& Patricia Ave	2019	7:00			10	4		7	15			2	5			5	2	12	62
6030 Patricia Ave \& 26th St																			0
6035 Patricia \& Brentwood Trace	2022							20		3		3	47				27	3	${ }^{103}$
6040 Patricia Ave \& West Access 6050 18th St \& Patrica Ave		8:00				15		34	147	9		27	41	10		6		31	${ }_{576}$
6050 181 St \& Sout Paticia New Access						15											21		$\begin{gathered} 576 \\ 0 \end{gathered}$

Notes
-34 th $\&$ Aberdeen had counts from a Friday and the following Monday, in December 2021. Volumes averaged from the two counts.

Notes

- 1

Notes

- City of
A Assume 5% trucks on Arterial Street thrus, 2% everywhere else, except near industrial generators like the south leg at Patricia \& 34 th

26th \& Durum count only has daily approach and depart volumes by leg. Estimate turning movement volumes from the daily volumes.

- Count was taken while Marquis Dr was closed between Durum and Marland. May have caused some trips from new development south of Maryland to use Maryland instead of continuing north to Durum. Likely small effect, no adjustments.
- North leg volumes seem way too high. Set turning movements to work with count volumes on south and west legs, guessed on east leg (not counted) and did not match on north leg.

Patricia and Brentwood PM EBT and WBR adjusted up to give reasonable imbalance to 18 t

- Background growth only considers development at 2222 Currie Blvd Commercial. PM volumes from TIS, AM calculated with ITE rates and distribution from TIS

Input Needed																				
2052 Post Development																				
$1{ }^{\text {I }}$		Intersection	Year	NBU	NBL	NBT	NBR	SBU	SBL	SBt	SBR	EBu	EBL	EBt	EBR	wBU	WBL	WBT	WBR	Total
	1010	Richmond Ave \& Brookwood Dr	2052	0	${ }^{11}$	5	86	0	28	6	1	0	1	68	4	0	17	50	14	291
	1020	Richmond Ave 8 34th St	2052	0	36	311	185	0	213	181	20	0	61	72	50	0	104	25	112	1370
	1510	Brookwood Drive at Plateau Drive	2052	0	0	25	-	0	-	10	0	0	-	,	0	0	0	0	0	35
	2010	Lakeview Drive at Brookwood Drive	2052	0	7	18	13	0	0	5	5	0		1	0	0	5	3	1	58
	2015	Lakeview Drive at Plateau Drive	2052	0	5	0	27	0	0	0	0	0	0	13	2	0	9	4	0	60
	2020	34th St \& Aberdeen Ave	2052	0	9	238	4	0	60	181	93	0	181	28	19	0	4	18	113	948
	2025	Durum Drive at Aberdeen Avenue	2052	0	32	0	0	0	0	0	0	0	0	0	24	0	0	0	0	56
	3030	26 th St \& Durum Dr	2052	0	51	409	18	0	14	225	14	0	36	3	63	0	9	6	15	863
	4030	Mayland Ave \& 26 th St	2052	0	10	272	190	0	114	154	24	0	72	68	6	0	131	47	137	1225
	5010	Lakeview \& Marylicia	2052	0	0	20	201	0	23	48	0	0	0	0	0	0	96	0	14	402
	5020	34th St \& Marylicia	2052	0	67	129	10	0	17	160	26	0	91	174	85	0	16	118	30	923
	5030	26 th St \& Marylicia	2052	0	72	139	-	0	0	128	164	0	263	,	94	0	0	0	0	860
	6010	Lakeview \& Patricia Ave	2052	0	0	0	0	0	52	0	10	0	3	27	0	0	0	37	21	150
	6020	34th St \& Patricia Ave	2052	0	5	15	10	0	182	20	59	0	25	74	5	0	5	41	156	597
	6030 P	Patricia Ave \& 26th St	2052	0	90	41	87	0	164	18	3	0	2	209	56	0	24	110	80	884
	6035	Patricia \& Brentwood Trace	2052	0	0	-	0	0	20	0	3	0	3	458	0	0	0	211	3	698
	6040	Patricia Ave \& West Access	2052	0	93	0	102	0	0	0	0	0	0	331	148	0	119	121	0	914
	6050	18th St \& Partrica Ave	2052	0	71	304	47	0	67	240	129	0	164	167	128	0	33	88	56	1494
	6250	18th St S South Patricia New Access	2052	0	46	320	0	0	0	297	105	0	103	0	41	0	0	0	0	912

Notes
-3 4th \& Aberdeen had counts from a Friday and the following Monday, in December 2021. Volumes averaged from the two counts.

Notes
\& Aberdeen PHFs averaged from two counts.

Notes

- City of
AAssume 5% trucks on Arterial Street thrus, 2% evervwhere else, except near industrial generators like the south leg at Patricia $\& 34$ th

- Background growth only considers development at 2222 Currie BIvd Commercial. PM volumes from TIS, AM calculated with ITE rates and distribution from TIS

Input Needed																									
Formulated Peak to Daily Daily																									
Raw Counts																									
	1010 Richmond Ave \& Brookwood Dr				20	10	466	0	332	10	15	0	15	420	15	0	567	465	383	2718	1,100		765	950	2633
	1020 Richmond Ave \& 34th St				112	969	750	0	1959	585	385	0	500	500	232	0	916	900	1900	9708	3,600		6298	2629	6925
	1510 Brookwood Drive at Plateau Drive																			0					
	2010 Lakeview Drive at Brookwood Drive																								
	2015 Lakeview Drive at Plateau Drive																			0					
	2020 34th St \& Aberdeen Ave				87.5	${ }^{422}$	34		276.5	476	863.5		937	171.5	102.5		${ }^{37}$	175	339	3921	1,200		3314	2337	1032.5
	2025 Durum Drive at Aberdeen Avenue																			0					
	303026 th St \& Durum Dr				275	1230	175		125	975	135		360	15	450		95	15	150	4000	3,200		2975	1250	575
	${ }_{5030} 030$ Maryland Ave \& 26th 5 St																			0	0		0	0	0
	5010 Lakeview \& Marylicia																			0	0		0	0	
	5020 34th St \& Marylicia																			0					
	503026 St St M Marylicia																			0					
	6020 34th st \& Patricicia Ave																			0	0		0	0	0
	6030 Patricia Ave \& 26th St																			0					
	6035 Patricia \& Brentwood Trace								191		39		${ }^{41}$	418				382	193	1264					
	6040 Patricia Ave \& West Access																			0					
	6050 6250 18th St \& \& Parrrica Ave A S South Patricia New Accesss																			0	0		${ }_{0}^{0}$	${ }_{0}^{0}$	\bigcirc

Notes
-34 th \& Aberdeen had counts from a Friday and the following Monday, in December 2021. Volumes averaged from the two counts.

Peak Six Hour Volume Factors

ID	Intersection	AM Peak	PM Peak	AM 2	Mid 2	PM 2	Factor
1010	Richmond Ave \& Brookwood Dr	0	0				$\mathbf{2 . 0 9 5 2 1 1}$
2020	34th St \& Aberdeen Ave	431	456.5	673	590.5	596	$\mathbf{2 . 0 9 5 2 1 1}$
6020	34th St \& Patricia Ave	62	97	85	98	147	$\mathbf{2 . 0 7 5 4 7 2}$
3030	26th St \& Durum Dr	0	0				$\mathbf{2 . 2 1 0 1 2 9}$
4030	26th St \& Maryland Ave	445	483	681	588	782	$\mathbf{2 . 2 1 0 1 2 9}$
6035	Patricia Ave \& Brentwood Trace	103	124	158	193	205	$\mathbf{2 . 4 4 9 3 3 9}$
6050	18th St \& Patricia Ave	576	783	1020	1068	1279	$\mathbf{2 . 4 7 7 5 5 7}$

New Intersections							
ID	Intersection	AM Peak	PM Peak	AM 2	Mid 2	PM 2	Factor
5010	Lakeview \& Marylicia						2.095211
6010	Lakeview \& Patricia Ave						2.075472
5020	34th St \& Marylicia						2.095211
5030	26th St \& Marylicia						2.210129
6030	Patricia Ave \& 26th St						2.449339
6040	Patricia Ave \& West Access						2.449339
6250	18th St \& South Patricia New Access						2.477557

- All factors range from 2.07 to 2.48
- Use factor from 26th \& Maryland for 26th \& Durum, 26th \& new east-west collector
- Use factor from 34th \& Aberdeen for Richmond \& Brookwood, new intersections in Brookwood South
- Use factor from 18th \& Patricia for new access on 18th Street
- Use factor from Patricia \& 34th at Patricia \& Lakeview

Peak Six Hour Volumes

- Note: EB \& WB order reversed to match TSWA template

2052 Post-Development

- Existing intersections - model with existing configurations

	Intersection	NBL	NBT	NBR	SBL	SBT	SBR	EBL	EBT	EBR	WBL	WBT	WBR	TOTAL
1010	Richmond Ave \& Brookwood Dr	38	13	241	115	17	4	4	323	31	193	316	130	1425
2020	34th St \& Aberdeen Ave	71	1198	21	312	1230	587	610	101	82	21	92	377	4702
6020	34th St \& Patricia Ave	21	83	42	930	73	226	158	417	21	31	388	865	3255
3030	26th St \& Durum Dr	221	1887	88	66	1594	62	159	20	283	49	22	66	4517
4030	Maryland Ave \& 26th St	44	1346	727	544	1151	219	256	234	20	661	283	612	6097
6035	Patricia \& Brentwood Trace	0	0	0	93	0	15	20	2890	0	0	2604	93	5715
6050	18th St \& Partrica Ave	701	1838	339	344	1928	1269	1140	850	736	320	761	273	10499

Minor Street Traffic Total	
183	30.5
824	137.3333
1107	184.5
250	41.66667
1434	239
93	15.5
3071	511.8333

	Intersection	NBL	NBT	NBR	SBL	SBT	SBR	EBL	EBT	EBR	WBL	WBT	WBR	TOTAL
5010	Lakeview \& Marylicia	0	243	614	78	264	0	0	0	0	509	0	67	1199
6010	Lakeview \& Patricia Ave	0	0	0	274	0	33	27	172	0	0	183	251	506
5020	34th St \& Marylicia	237	857	50	122	939	239	298	536	247	54	499	134	3525
5030	26th St \& Marylicia	537	997	0	0	970	833	926	0	548	0	0	0	4811
6030	Patricia Ave \& 26th St	294	149	331	1198	120	12	20	1379	247	257	1212	1149	3750
6040	Patricia Ave \& West Access	1577	0	1195	0	0	0	0	1401	1592	1195	1119	0	5765
6250	18th St \& South Patricia New Access	364	1851	0	0	1962	1023	1031	0	367	0	0	0	6598

Minor Street Traffic	
Total	Average
509	84.83333
1387	231.1667
926	154.3333
1761	293.5
1577	262.8333
1031	171.8333

2022 Background

	Intersection	NBL	NBT	NBR	SBL	SBT	SBR	EBL	EBT	EBR	WBL	WBT	WBR	TOTAL
1010	Richmond Ave \& Brookwood Dr	4	2	205	115	4	4	4	170	4	166	153	130	961
2020	34th St \& Aberdeen Ave	42	239	21	159	354	497	503	98	54	21	92	201	2281
6020	34th St \& Patricia Ave	21	83	42	145	73	170	108	42	21	31	31	83	850
3030	26th St \& Durum Dr	146	550	80	57	396	62	159	9	194	33	9	66	1761
4030	Maryland Ave \& 26th St	29	267	188	422	161	46	40	95	9	192	172	484	2105
6035	Patricia \& Brentwood Trace	0	0	0	93	0	15	20	250	0	0	157	93	628
6050	18th St \& Partrica Ave	82	1058	79	258	1127	164	156	216	74	64	191	193	3662

Total	Average
125	20.83333
714	119
322	53.66667
210	35
499	83.16667
93	15.5
627	104.5

9 mismean mine
matum.

Matame

mamancianmem
mexnamp

sminnumpux

lin

	$\stackrel{*}{ }$	\rightarrow		7		4	4	\uparrow	1		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Right Turn Channelized												
Traffic Volume (veh/h)	61	61	28	79	22	109	5	150	102	212	84	20
Future Volume (veh/h)	61	61	28	79	22	109	5	150	102	212	84	20
Peak Hour Factor	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74
Hourly flow rate (vph)	82	82	38	107	30	147	7	203	138	286	114	27
Approach Volume (veh/h)		202			284			348			427	
Crossing Volume (veh/h)		507			292			450			144	
High Capacity (veh/h)		928			1101			971			1237	
High v/c (veh/h)		0.22			0.26			0.36			0.35	
Low Capacity (veh/h)		750			904			788			1027	
Low v/c (veh/h)		0.27			0.31			0.44			0.42	
Intersection Summary												
Maximum v/c High			0.36									
Maximum v/c Low			0.44									
Intersection Capacity Utilization			57.1\%		CU Level	Service			B			

Intersection								
Intersection Delay, s/veh	10.2							
Intersection LOS	B							
Approach		EB		WB		NB		SB
Entry Lanes		1		1		1		1
Conflicting Circle Lanes		1		1		1		1
Adj Approach Flow, veh/h		202		284		348		427
Demand Flow Rate, veh/h		209		291		361		440
Vehicles Circulating, veh/h		521		304		462		147
Vehicles Exiting, veh/h		66		519		268		447
Follow-Up Headway, s		3.186		3.186		3.186		3.186
Ped Vol Crossing Leg, \#/h		0		0		0		0
Ped Cap Adj		1.000		1.000		1.000		1.000
Approach Delay, s/veh		9.6		8.5		13.1		9.1
Approach LOS		A		A		B		A
Lane	Left		Left		Left		Left	
Designated Moves	LTR		LTR		LTR		LTR	
Assumed Moves	LTR		LTR		LTR		LTR	
RT Channelized								
Lane Util	1.000		1.000		1.000		1.000	
Critical Headway, s	5.193		5.193		5.193		5.193	
Entry Flow, veh/h	209		291		361		440	
Cap Entry Lane, veh/h	671		834		712		975	
Entry HV Adj Factor	0.966		0.978		0.964		0.971	
Flow Entry, veh/h	202		284		348		427	
Cap Entry, veh/h	648		815		686		947	
VIC Ratio	0.311		0.349		0.507		0.451	
Control Delay, s/veh	9.6		8.5		13.1		9.1	
LOS	A		A		B		A	
95th \%tile Queue, veh	1		2		3		2	

	4	\rightarrow		\dagger			4	\dagger	7		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			\$			*			\$	
Traffic Volume (veh/h)	149	27	12		18	58	6	50	4	31	78	82
Future Volume (Veh/h)	149	27	12	4	18	58	6	50	4	31	78	82
Sign Control		Stop			Stop			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74
Hourly flow rate (vph)	201	36	16	5	24	78	8	68	5	42	105	111
Pedestrians												
Lane Width (m)												
Walking Speed (m / s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC , conflicting volume	421	334	160	365	386	70	216			73		
vC1, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu , unblocked vol	421	334	160	365	386	70	216			73		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
$\mathrm{tC}, 2$ stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free \%	57	94	98	99	95	92	99			97		
cM capacity (veh/h)	471	567	885	538	530	992	1354			1527		
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	253	107	81	258								
Volume Left	201	5	8	42								
Volume Right	16	78	5	111								
cSH	497	803	1354	1527								
Volume to Capacity	0.51	0.13	0.01	0.03								
Queue Length 95th (m)	21.6	3.5	0.1	0.6								
Control Delay (s)	19.5	10.2	0.8	1.4								
Lane LOS	C	B	A	A								
Approach Delay (s)	19.5	10.2	0.8	1.4								
Approach LOS	C	B										
Intersection Summary												
Average Delay			9.2									
Intersection Capacity Utilization			40.7\%	ICU Level of Service					A			
Analysis Period (min)			15									

	\rangle		\leftarrow	4	\checkmark	\checkmark
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		${ }^{*}$	\uparrow		M	
Sign Control		Stop	Stop		Stop	
Traffic Volume (vph)	70	67	82	96	79	41
Future Volume (vph)	70	67	82	96	79	41
Peak Hour Factor	0.65	0.65	0.65	0.65	0.65	0.65
Hourly flow rate (vph)	108	103	126	148	122	63
Direction, Lane \#	EB 1	WB 1	SB 1			
Volume Total (vph)	211	274	185			
Volume Left (vph)	108	0	122			
Volume Right (vph)	0	148	63			
Hadj (s)	0.14	-0.29	-0.04			
Departure Headway (s)	4.8	4.4	5.0			
Degree Utilization, x	0.28	0.33	0.26			
Capacity (veh/h)	703	783	670			
Control Delay (s)	9.8	9.5	9.7			
Approach Delay (s)	9.8	9.5	9.7			
Approach LOS	A	A	A			

Intersection Summary			
Delay	9.6		
Level of Service	A	ICU Level of Service	A
Intersection Capacity Utilization	34.5%		
Analysis Period (min)	15		

	$\stackrel{ }{*}$	\rightarrow		7	\leftarrow	4	4	\dagger	p	\checkmark	\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Right Turn Channelized												
Traffic Volume (veh/h)	35	35	14	199	78	147	12	88	93	128	78	78
Future Volume (veh/h)	35	35	14	199	78	147	12	88	93	128	78	78
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	38	38	15	216	85	160	13	96	101	139	85	85
Approach Volume (veh/h)		91			461			210			309	
Crossing Volume (veh/h)		440			147			215			314	
High Capacity (veh/h)		979			1234			1170			1082	
High v/c (veh/h)		0.09			0.37			0.18			0.29	
Low Capacity (veh/h)		795			1025			967			887	
Low v/c (veh/h)		0.11			0.45			0.22			0.35	
Intersection Summary												
Maximum v/c High			0.37									
Maximum v/c Low			0.45									
Intersection Capacity Utilization			67.7\%		CU Level	Service			C			

Intersection								
Intersection Delay, s/veh	8.8							
Intersection LOS	A							
Approach		EB		WB		NB		SB
Entry Lanes		1		1		1		1
Conflicting Circle Lanes		1		1		1		1
Adj Approach Flow, veh/h		91		461		210		309
Demand Flow Rate, veh/h		94		472		217		318
Vehicles Circulating, veh/h		451		153		221		322
Vehicles Exiting, veh/h		189		285		324		303
Follow-Up Headway, s		3.186		3.186		3.186		3.186
Ped Vol Crossing Leg, \#/h		0		0		0		0
Ped Cap Adj		1.000		1.000		1.000		1.000
Approach Delay, s/veh		6.6		9.8		6.6		9.3
Approach LOS		A		A		A		A
Lane	Left		Left		Left		Left	
Designated Moves	LTR		LTR		LTR		LTR	
Assumed Moves	LTR		LTR		LTR		LTR	
RT Channelized								
Lane Util	1.000		1.000		1.000		1.000	
Critical Headway, s	5.193		5.193		5.193		5.193	
Entry Flow, veh/h	94		472		217		318	
Cap Entry Lane, veh/h	720		970		906		819	
Entry HV Adj Factor	0.969		0.976		0.969		0.971	
Flow Entry, veh/h	91		461		210		309	
Cap Entry, veh/h	698		947		877		795	
V/C Ratio	0.131		0.487		0.240		0.388	
Control Delay, s/veh	6.6		9.8		6.6		9.3	
LOS	A		A		A		A	
95th \%tile Queue, veh	0		3		1		2	

	4	\rightarrow	4	4	(\pm
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		*	\uparrow		*	
Sign Control		Stop	Stop		Stop	
Traffic Volume (vph)	67	58	79	118	109	51
Future Volume (vph)	67	58	79	118	109	51
Peak Hour Factor	0.73	0.73	0.73	0.73	0.73	0.73
Hourly flow rate (vph)	92	79	108	162	149	70
Direction, Lane \#	EB 1	WB 1	SB 1			
Volume Total (vph)	171	270	219			
Volume Left (vph)	92	0	149			
Volume Right (vph)	0	162	70			
Hadj (s)	0.14	-0.33	-0.02			
Departure Headway (s)	4.9	4.4	4.9			
Degree Utilization, x	0.23	0.33	0.30			
Capacity (veh/h)	685	779	686			
Control Delay (s)	9.4	9.5	10.0			
Approach Delay (s)	9.4	9.5	10.0			
Approach LOS	A	A	A			

Intersection Summary			
Delay	9.6		
Level of Service	A	ICU Level of Service	A
Intersection Capacity Utilization	37.3%		
Analysis Period (min)	15		

	\rangle		\%	t	\checkmark	4	4	4	7	\checkmark	\dagger	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Right Turn Channelized												
Traffic Volume (veh/h)	61	72	50	104	25	112	36	311	185	213	181	20
Future Volume (veh/h)	61	72	50	104	25	112	36	311	185	213	181	20
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	66	78	54	113	27	122	39	338	201	232	197	22
Approach Volume (veh/h)		198			262			578			451	
Crossing Volume (veh/h)		542			443			376			179	
High Capacity (veh/h)		903			977			1030			1204	
High v/c (veh/h)		0.22			0.27			0.56			0.37	
Low Capacity (veh/h)		727			793			841			997	
Low v/c (veh/h)		0.27			0.33			0.69			0.45	

Intersection Summary

Maximum v/c High	0.56		
Maximum v/c Low	0.69	ICU Level of Service	E
Intersection Capacity Utilization	82.5%		

Intersection								
Intersection Delay, s/veh	15.5							
Intersection LOS	C							
Approach		EB		WB		NB		SB
Entry Lanes		1		1		1		1
Conflicting Circle Lanes		1		1		1		1
Adj Approach Flow, veh/h		198		262		578		451
Demand Flow Rate, veh/h		204		267		600		466
Vehicles Circulating, veh/h		559		462		386		183
Vehicles Exiting, veh/h		90		524		377		546
Follow-Up Headway, s		3.186		3.186		3.186		3.186
Ped Vol Crossing Leg, \#/h		0		0		0		0
Ped Cap Adj		1.000		1.000		1.000		1.000
Approach Delay, s/veh		9.9		10.1		23.8		10.2
Approach LOS		A		B		C		B
Lane	Left		Left		Left		Left	
Designated Moves	LTR		LTR		LTR		LTR	
Assumed Moves	LTR		LTR		LTR		LTR	
RT Channelized								
Lane Util	1.000		1.000		1.000		1.000	
Critical Headway, s	5.193		5.193		5.193		5.193	
Entry Flow, veh/h	204		267		600		466	
Cap Entry Lane, veh/h	646		712		768		941	
Entry HV Adj Factor	0.971		0.980		0.963		0.968	
Flow Entry, veh/h	198		262		578		451	
Cap Entry, veh/h	627		698		740		911	
V/C Ratio	0.316		0.375		0.781		0.495	
Control Delay, s/veh	9.9		10.1		23.8		10.2	
LOS	A		B		C		B	
95th \%tile Queue, veh	1		2		8		3	

	4			7			4	\dagger	7		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow	「		\$			*			¢	
Traffic Volume (veh/h)	181	28	19		18	113	9	238	4	60	181	93
Future Volume (Veh/h)	181	28	19	4	18	113	9	238	4	60	181	93
Sign Control		Stop			Stop			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	197	30	21	4	20	123	10	259	4	65	197	101
Pedestrians												
Lane Width (m)												
Walking Speed (m / s)												
Percent Blockage												
Right turn flare (veh)			1									
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC , conflicting volume	792	660	248	684	709	261	298			263		
vC1, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu , unblocked vol	792	660	248	684	709	261	298			263		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
$\mathrm{tC}, 2$ stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free \%	17	92	97	99	94	84	99			95		
cM capacity (veh/h)	236	361	791	316	338	778	1263			1301		
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	248	147	273	363								
Volume Left	197	4	10	65								
Volume Right	21	123	4	101								
cSH	265	639	1263	1301								
Volume to Capacity	0.94	0.23	0.01	0.05								
Queue Length 95th (m)	65.7	6.7	0.2	1.2								
Control Delay (s)	81.2	12.3	0.4	1.8								
Lane LOS	F	B	A	A								
Approach Delay (s)	81.2	12.3	0.4	1.8								
Approach LOS	F	B										
Intersection Summary												
Average Delay			22.0									
Intersection Capacity Utilization			64.7\%	ICU Level of Service					C			
Analysis Period (min)			15									

	4	\rightarrow	\geqslant	7	\checkmark	4	4	\dagger	$>$	-	\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow			*			${ }_{*}$			¢	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	72	68	6	131	47	137	10	272	190	114	154	24
Future Volume (vph)	72	68	6	131	47	137	10	272	190	114	154	24
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	78	74	7	142	51	149	11	296	207	124	167	26

Direction, Lane \#	EB 1	WB 1	NB 1	SB 1
Volume Total (vph)	159	342	514	317
Volume Leff (vph)	78	142	11	124
Volume Right (vph)	7	149	207	26
Hadj (s)	0.11	-0.14	-0.20	0.06
Departure Headway (s)	8.0	7.1	6.5	7.2
Degree Utilization, x	0.35	0.67	0.92	0.63
Capacity (veh/h)	399	486	547	475
Control Delay (s)	15.3	23.4	46.4	21.6
Approach Delay (s)	15.3	23.4	46.4	21.6
Approach LOS	C	C	E	C

Intersection Summary			
Delay	30.9		
Level of Service	D	D	
Intersection Capacity Utilization	73.8%	ICU Level of Service	
Analysis Period (min)	15		

	\dagger	4	\dagger	$>$	\checkmark	\downarrow	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	\%		\uparrow			\uparrow	
Sign Control	Stop		Stop			Stop	
Traffic Volume (vph)	96	14	20	201	23	48	
Future Volume (vph)	96	14	20	201	23	48	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	104	15	22	218	25	52	
Direction, Lane \#	WB 1	NB 1	SB 1				
Volume Total (vph)	119	240	77				
Volume Left (vph)	104	0	25				
Volume Right (vph)	15	218	0				
Hadj (s)	0.13	-0.51	0.10				
Departure Headway (s)	4.7	3.8	4.5				
Degree Utilization, x	0.15	0.25	0.10				
Capacity (veh/h)	715	921	755				
Control Delay (s)	8.5	8.0	8.0				
Approach Delay (s)	8.5	8.0	8.0				
Approach LOS	A	A	A				
Intersection Summary							
Delay			8.2				
Level of Service			A				
Intersection Capacity Utilization			33.4\%	ICU Level of Service			A
Analysis Period (min)			15				

	4		4	\uparrow	\downarrow	\downarrow	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	Y			\uparrow	\uparrow		
Sign Control	Stop			Stop	Stop		
Traffic Volume (vph)	263	94	72	139	128	164	
Future Volume (vph)	263	94	72	139	128	164	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	286	102	78	151	139	178	
Direction, Lane \#	EB 1	NB 1	SB 1				
Volume Total (vph)	388	229	317				
Volume Left (vph)	286	78	0				
Volume Right (vph)	102	0	178				
Hadj (s)	0.02	0.10	-0.30				
Departure Headway (s)	5.4	5.6	5.1				
Degree Utilization, x	0.58	0.36	0.45				
Capacity (veh/h)	640	590	663				
Control Delay (s)	15.4	11.7	12.2				
Approach Delay (s)	15.4	11.7	12.2				
Approach LOS	C	B	B				
Intersection Summary							
Delay			13.4				
Level of Service			B				
Intersection Capacity Utilization			58.4\%	ICU Level of Service			B
Analysis Period (min)			15				

	4			7			4	\dagger	7		\dagger	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			\$			*			\$	
Traffic Volume (veh/h)	25	74	5	5	41	156	5	15	10	182	20	59
Future Volume (Veh/h)	25	74	5	5	41	156	5	15	10	182	20	59
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	27	80	5	5	45	170	5	16	11	198	22	64
Pedestrians												
Lane Width (m)												
Walking Speed (m / s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC , conflicting volume	215			85			352	362	82	296	279	130
vC1, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu, unblocked vol	215			85			352	362	82	296	279	130
tC, single (s)	4.1			4.2			7.2	6.6	6.3	7.1	6.6	6.2
$\mathrm{tC}, 2$ stage (s)												
tF (s)	2.2			2.3			3.6	4.1	3.4	3.5	4.1	3.3
p0 queue free \%	98			100			99	97	99	68	96	93
cM capacity (veh/h)	1355			1462			523	540	955	623	601	920
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	112	220	32	284								
Volume Left	27	5	5	198								
Volume Right	5	170	11	64								
cSH	1355	1462	631	670								
Volume to Capacity	0.02	0.00	0.05	0.42								
Queue Length 95th (m)	0.5	0.1	1.2	16.1								
Control Delay (s)	2.0	0.2	11.0	14.3								
Lane LOS	A	A	B	B								
Approach Delay (s)	2.0	0.2	11.0	14.3								
Approach LOS			B	B								
Intersection Summary												
Average Delay			7.2									
Intersection Capacity Utilization			46.0\%	ICU Level of Service					A			
Analysis Period (min)			15									

	\rangle		\%	t	\checkmark	4	4	4	7	\checkmark	\dagger	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Right Turn Channelized												
Traffic Volume (veh/h)	61	72	50	104	25	112	36	311	185	213	181	20
Future Volume (veh/h)	61	72	50	104	25	112	36	311	185	213	181	20
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	66	78	54	113	27	122	39	338	201	232	197	22
Approach Volume (veh/h)		198			262			578			451	
Crossing Volume (veh/h)		542			443			376			179	
High Capacity (veh/h)		903			977			1030			1204	
High v/c (veh/h)		0.22			0.27			0.56			0.37	
Low Capacity (veh/h)		727			793			841			997	
Low v/c (veh/h)		0.27			0.33			0.69			0.45	

Intersection Summary

Maximum v/c High	0.56		
Maximum v/c Low	0.69	ICU Level of Service	E
Intersection Capacity Utilization	82.5%		

Intersection								
Intersection Delay, s/veh	15.5							
Intersection LOS	C							
Approach		EB		WB		NB		SB
Entry Lanes		1		1		1		1
Conflicting Circle Lanes		1		1		1		1
Adj Approach Flow, veh/h		198		262		578		451
Demand Flow Rate, veh/h		204		267		600		466
Vehicles Circulating, veh/h		559		462		386		183
Vehicles Exiting, veh/h		90		524		377		546
Follow-Up Headway, s		3.186		3.186		3.186		3.186
Ped Vol Crossing Leg, \#/h		0		0		0		0
Ped Cap Adj		1.000		1.000		1.000		1.000
Approach Delay, s/veh		9.9		10.1		23.8		10.2
Approach LOS		A		B		C		B
Lane	Left		Left		Left		Left	
Designated Moves	LTR		LTR		LTR		LTR	
Assumed Moves	LTR		LTR		LTR		LTR	
RT Channelized								
Lane Util	1.000		1.000		1.000		1.000	
Critical Headway, s	5.193		5.193		5.193		5.193	
Entry Flow, veh/h	204		267		600		466	
Cap Entry Lane, veh/h	646		712		768		941	
Entry HV Adj Factor	0.971		0.980		0.963		0.968	
Flow Entry, veh/h	198		262		578		451	
Cap Entry, veh/h	627		698		740		911	
V/C Ratio	0.316		0.375		0.781		0.495	
Control Delay, s/veh	9.9		10.1		23.8		10.2	
LOS	A		B		C		B	
95th \%tile Queue, veh	1		2		8		3	

	4	\rightarrow		7	-	4	4	\uparrow	$>$	\checkmark	\downarrow	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Right Turn Channelized												
Traffic Volume (veh/h)	181	28	19	4	18	113	9	238	4	60	181	93
Future Volume (veh/h)	181	28	19	4	18	113	9	238	4	60	181	93
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	197	30	21	4	20	123	10	259	4	65	197	101
Approach Volume (veh/h)		248			147			273			363	
Crossing Volume (veh/h)		266			466			292			34	
High Capacity (veh/h)		1124			959			1101			1348	
High v/c (veh/h)		0.22			0.15			0.25			0.27	
Low Capacity (veh/h)		925			777			904			1128	
Low v/c (veh/h)		0.27			0.19			0.30			0.32	
Intersection Summary												
Maximum v/c High			0.27									
Maximum v/c Low			0.32									
Intersection Capacity Utilization			65.9\%		CU Level	f Service			C			

Intersection								
Intersection Delay, s/veh	7.6							
Intersection LOS	A							
Approach		EB		WB		NB		SB
Entry Lanes		1		1		1		1
Conflicting Circle Lanes		1		1		1		1
Adj Approach Flow, veh/h		248		147		273		363
Demand Flow Rate, veh/h		253		149		286		376
Vehicles Circulating, veh/h		277		483		298		34
Vehicles Exiting, veh/h		133		101		232		598
Follow-Up Headway, s		3.186		3.186		3.186		3.186
Ped Vol Crossing Leg, \#/h		0		0		0		0
Ped Cap Adj		1.000		1.000		1.000		1.000
Approach Delay, s/veh		7.5		7.7		8.5		6.9
Approach LOS		A		A		A		A
Lane	Left		Left		Left		Left	
Designated Moves	LTR		LTR		LTR		LTR	
Assumed Moves	LTR		LTR		LTR		LTR	
RT Channelized								
Lane Util	1.000		1.000		1.000		1.000	
Critical Headway, s	5.193		5.193		5.193		5.193	
Entry Flow, veh/h	253		149		286		376	
Cap Entry Lane, veh/h	857		697		839		1092	
Entry HV Adj Factor	0.982		0.984		0.955		0.966	
Flow Entry, veh/h	248		147		273		363	
Cap Entry, veh/h	841		686		801		1055	
V/C Ratio	0.295		0.214		0.341		0.344	
Control Delay, s/veh	7.5		7.7		8.5		6.9	
LOS	A		A		A		A	
95th \%tile Queue, veh	1		1		2		2	

	$\stackrel{ }{*}$	\rightarrow		7	\downarrow	4	4	\uparrow	7	\checkmark	\downarrow	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Right Turn Channelized												
Traffic Volume (veh/h)	72	68	6	131	47	137	10	272	190	114	154	24
Future Volume (veh/h)	72	68	6	131	47	137	10	272	190	114	154	24
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	78	74	7	142	51	149	11	296	207	124	167	26
Approach Volume (veh/h)		159			342			514			317	
Crossing Volume (veh/h)		433			385			276			204	
High Capacity (veh/h)		985			1023			1115			1180	
High v/c (veh/h)		0.16			0.33			0.46			0.27	
Low Capacity (veh/h)		800			834			917			976	
Low v/c (veh/h)		0.20			0.41			0.56			0.32	
Intersection Summary												
Maximum v/c High			0.46									
Maximum v/c Low			0.56									
Intersection Capacity Utilization			73.8\%		CU Level	Service			D			

Intersection								
Intersection Delay, s/veh	11.0							
Intersection LOS	B							
Approach		EB		WB		NB		SB
Entry Lanes		1		1		1		1
Conflicting Circle Lanes		1		1		1		1
Adj Approach Flow, veh/h		159		342		514		317
Demand Flow Rate, veh/h		162		349		524		323
Vehicles Circulating, veh/h		441		393		281		208
Vehicles Exiting, veh/h		90		412		322		534
Follow-Up Headway, s		3.186		3.186		3.186		3.186
Ped Vol Crossing Leg, \#/h		0		0		0		0
Ped Cap Adj		1.000		1.000		1.000		1.000
Approach Delay, s/veh		7.6		11.1		14.0		7.9
Approach LOS		A		B		B		A
Lane	Left		Left		Left		Left	
Designated Moves	LTR		LTR		LTR		LTR	
Assumed Moves	LTR		LTR		LTR		LTR	
RT Channelized								
Lane Util	1.000		1.000		1.000		1.000	
Critical Headway, s	5.193		5.193		5.193		5.193	
Entry Flow, veh/h	162		349		524		323	
Cap Entry Lane, veh/h	727		763		853		918	
Entry HV Adj Factor	0.979		0.980		0.981		0.980	
Flow Entry, veh/h	159		342		514		317	
Cap Entry, veh/h	711		747		837		900	
V/C Ratio	0.223		0.458		0.614		0.352	
Control Delay, s/veh	7.6		11.1		14.0		7.9	
LOS	A		B		B		A	
95th \%tile Queue, veh	1		2		4		2	

	\downarrow		\dagger	P		\downarrow	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Right Turn Channelized							
Traffic Volume (veh/h)	96	14	20	201	23	48	
Future Volume (veh/h)	96	14	20	201	23	48	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	104	15	22	218	25	52	
Approach Volume (veh/h)	119		240			77	
Crossing Volume (veh/h)	22		25			104	
High Capacity (veh/h)	1361		1358			1277	
High v/c (veh/h)	0.09		0.18			0.06	
Low Capacity (veh/h)	1140		1137			1063	
Low v/c (veh/h)	0.10		0.21			0.07	
Intersection Summary							
Maximum v/c High			0.18				
Maximum v/c Low			0.21				
Intersection Capacity Utilization			33.4\%		CU Leve	Service	A

	\rangle	\rightarrow	\%	7	\leftarrow	4	4	\dagger	$>$	*	\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Right Turn Channelized												
Traffic Volume (veh/h)	91	174	85	16	118	30	67	129	10	17	160	26
Future Volume (veh/h)	91	174	85	16	118	30	67	129	10	17	160	26
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	99	189	92	17	128	33	73	140	11	18	174	28
Approach Volume (veh/h)		380			178			224			220	
Crossing Volume (veh/h)		209			312			306			218	
High Capacity (veh/h)		1176			1084			1089			1167	
High v/c (veh/h)		0.32			0.16			0.21			0.19	
Low Capacity (veh/h)		972			889			893			964	
Low v/c (veh/h)		0.39			0.20			0.25			0.23	

Intersection Summary

Maximum v/c High	0.32		
Maximum v/c Low	0.39	ICU Level of Service	B
Intersection Capacity Utilization	63.7%		

Intersection								
Intersection Delay, s/veh	7.9							
Intersection LOS	A							
Approach		EB		WB		NB		SB
Entry Lanes		1		1		1		1
Conflicting Circle Lanes		1		1		1		1
Adj Approach Flow, veh/h		380		178		224		220
Demand Flow Rate, veh/h		388		182		232		230
Vehicles Circulating, veh/h		218		322		312		222
Vehicles Exiting, veh/h		234		222		294		282
Follow-Up Headway, s		3.186		3.186		3.186		3.186
Ped Vol Crossing Leg, \#/h		0		0		0		0
Ped Cap Adj		1.000		1.000		1.000		1.000
Approach Delay, s/veh		9.2		6.9		7.7		6.8
Approach LOS		A		A		A		A
Lane	Left		Left		Left		Left	
Designated Moves	LTR		LTR		LTR		LTR	
Assumed Moves	LTR		LTR		LTR		LTR	
RT Channelized								
Lane Util	1.000		1.000		1.000		1.000	
Critical Headway, s	5.193		5.193		5.193		5.193	
Entry Flow, veh/h	388		182		232		230	
Cap Entry Lane, veh/h	909		819		827		905	
Entry HV Adj Factor	0.980		0.980		0.966		0.958	
Flow Entry, veh/h	380		178		224		220	
Cap Entry, veh/h	890		803		799		867	
V/C Ratio	0.427		0.222		0.280		0.254	
Control Delay, s/veh	9.2		6.9		7.7		6.8	
LOS	A		A		A		A	
95th \%tile Queue, veh	2		1		1		1	

HCM Unsignalized Intersection Capacity Analysis 5030: Marylicia New \& 26th St Ext

	4		4	\uparrow	\downarrow	\downarrow	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Right Turn Channelized							
Traffic Volume (veh/h)	263	94	72	139	128	164	
Future Volume (veh/h)	263	94	72	139	128	164	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	286	102	78	151	139	178	
Approach Volume (veh/h)	388			229	317		
Crossing Volume (veh/h)	139			286	78		
High Capacity (veh/h)	1242			1106	1303		
High v/c (veh/h)	0.31			0.21	0.24		
Low Capacity (veh/h)	1032			909	1087		
Low v/c (veh/h)	0.38			0.25	0.29		
Intersection Summary							
Maximum v/c High			0.31				
Maximum v/c Low			0.38				
Intersection Capacity Utilization			58.4\%		CU Level	Service	B

	\rangle	\rightarrow		\checkmark		4	4	\uparrow	p	\checkmark	\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Right Turn Channelized												
Traffic Volume (veh/h)	25	74	5	5	41	156	5	15	10	182	20	59
Future Volume (veh/h)	25	74	5	5	41	156	5	15	10	182	20	59
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	27	80	5	5	45	170	5	16	11	198	22	64
Approach Volume (veh/h)		112			220			32			284	
Crossing Volume (veh/h)		225			48			305			55	
High Capacity (veh/h)		1161			1334			1090			1327	
High v/c (veh/h)		0.10			0.16			0.03			0.21	
Low Capacity (veh/h)		958			1115			894			1108	
Low v/c (veh/h)		0.12			0.20			0.04			0.26	
Intersection Summary												
Maximum v/c High			0.21									
Maximum v/c Low			0.26									
Intersection Capacity Utilization			46.0\%		CU Level	f Service			A			

Intersection								
Intersection Delay, s/veh	5.7							
Intersection LOS	A							
Approach		EB		WB		NB		SB
Entry Lanes		1		1		1		1
Conflicting Circle Lanes		1		1		1		1
Adj Approach Flow, veh/h		112		220		32		284
Demand Flow Rate, veh/h		118		226		36		291
Vehicles Circulating, veh/h		231		51		314		57
Vehicles Exiting, veh/h		117		298		34		219
Follow-Up Headway, s		3.186		3.186		3.186		3.186
Ped Vol Crossing Leg, \#h		0		0		0		0
Ped Cap Adj		1.000		1.000		1.000		1.000
Approach Delay, s/veh		5.5		5.4		5.3		6.1
Approach LOS		A		A		A		A
Lane	Left		Left		Left		Left	
Designated Moves	LTR		LTR		LTR		LTR	
Assumed Moves	LTR		LTR		LTR		LTR	
RT Channelized								
Lane Util	1.000		1.000		1.000		1.000	
Critical Headway, s	5.193		5.193		5.193		5.193	
Entry Flow, veh/h	118		226		36		291	
Cap Entry Lane, veh/h	897		1074		825		1067	
Entry HV Adj Factor	0.949		0.972		0.899		0.975	
Flow Entry, veh/h	112		220		32		284	
Cap Entry, veh/h	851		1044		742		1041	
V/C Ratio	0.132		0.210		0.044		0.273	
Control Delay, s/veh	5.5		5.4		5.3		6.1	
LOS	A		A		A		A	
95th \%tile Queue, veh	0		1		0		1	

	$\stackrel{ }{*}$	\rightarrow	\geqslant	7		4	4	\uparrow	$>$		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Right Turn Channelized												
Traffic Volume (veh/h)	2	209	56	24	110	80	90	41	87	164	18	3
Future Volume (veh/h)	2	209	56	24	110	80	90	41	87	164	18	3
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	2	227	61	26	120	87	98	45	95	178	20	3
Approach Volume (veh/h)		290			233			238			201	
Crossing Volume (veh/h)		224			145			407			244	
High Capacity (veh/h)		1162			1236			1005			1144	
High v/c (veh/h)		0.25			0.19			0.24			0.18	
Low Capacity (veh/h)		959			1026			818			943	
Low v/c (veh/h)		0.30			0.23			0.29			0.21	
Intersection Summary												
Maximum v/c High			0.25									
Maximum v/c Low			0.30									
Intersection Capacity Utilization			54.7\%		CU Level	f Service			A			

	\rightarrow	\geqslant	7		4	7	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Right Turn Channelized							
Traffic Volume (veh/h)	331	148	119	121	93	102	
Future Volume (veh/h)	331	148	119	121	93	102	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	360	161	129	132	101	111	
Approach Volume (veh/h)	521			261	212		
Crossing Volume (veh/h)	129			101	360		
High Capacity (veh/h)	1252			1280	1044		
High v/c (veh/h)	0.42			0.20	0.20		
Low Capacity (veh/h)	1041			1066	853		
Low v/c (veh/h)	0.50			0.24	0.25		
Intersection Summary							
Maximum v/c High			0.42				
Maximum v/c Low			0.50				
Intersection Capacity Utilization			39.2\%	ICU Level of Service			A

	4	\rightarrow	7	7	\sim	4	4	\uparrow	p	\checkmark	\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Right Turn Channelized												
Traffic Volume (veh/h)	164	167	128	33	88	56	71	304	47	67	240	129
Future Volume (veh/h)	164	167	128	33	88	56	71	304	47	67	240	129
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	178	182	139	36	96	61	77	330	51	73	261	140
Approach Volume (veh/h)		499			193			458			474	
Crossing Volume (veh/h)		370			585			433			209	
High Capacity (veh/h)		1035			872			985			1176	
High v/c (veh/h)		0.48			0.22			0.47			0.40	
Low Capacity (veh/h)		845			700			800			972	
Low v/c (veh/h)		0.59			0.28			0.57			0.49	
Intersection Summary												
Maximum v/c High			0.48									
Maximum v/c Low			0.59									
Intersection Capacity Utilization			57.9\%		CU Level	f Service			B			

Intersection								
Intersection Delay, s/veh	7.7							
Intersection LOS	A							
Approach		EB		WB		NB		SB
Entry Lanes		2		2		2		2
Conflicting Circle Lanes		2		2		2		2
Adj Approach Flow, veh/h		499		193		458		474
Demand Flow Rate, veh/h		515		200		477		491
Vehicles Circulating, veh/h		385		607		447		217
Vehicles Exiting, veh/h		323		317		453		590
Follow-Up Headway, s		3.186		3.186		3.186		3.186
Ped Vol Crossing Leg, \#/h		0		0		0		0
Ped Cap Adj		1.000		1.000		1.000		1.000
Approach Delay, s/veh		8.9		6.9		7.9		6.5
Approach LOS		A		A		A		A
Lane	Left	Right	Left	Right	Left	Right	Left	Right
Designated Moves	LT	R	LT	R	LT	TR	LT	TR
Assumed Moves	LT	R	LT	R	LT	TR	LT	TR
RT Channelized								
Lane Util	0.724	0.276	0.690	0.310	0.470	0.530	0.470	0.530
Critical Headway, s	4.293	4.113	4.293	4.113	4.293	4.113	4.293	4.113
Entry Flow, veh/h	373	142	138	62	224	253	231	260
Cap Entry Lane, veh/h	847	863	717	739	808	826	960	971
Entry HV Adj Factor	0.965	0.979	0.958	0.984	0.960	0.958	0.964	0.966
Flow Entry, veh/h	360	139	132	61	215	242	223	251
Cap Entry, veh/h	817	845	687	727	776	792	926	938
V/C Ratio	0.441	0.165	0.193	0.084	0.277	0.306	0.241	0.268
Control Delay, s/veh	10.0	5.9	7.5	5.8	7.8	8.1	6.3	6.6
LOS	B	A	A	A	A	A	A	A
95th \%tile Queue, veh	2	1	1	0	1	1	1	1

	7		4	\uparrow	\dagger	\downarrow	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Right Turn Channelized							
Traffic Volume (veh/h)	103	41	46	320	297	105	
Future Volume (veh/h)	103	41	46	320	297	105	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	112	45	50	348	323	114	
Approach Volume (veh/h)	157			398	437		
Crossing Volume (veh/h)	323			112	50		
High Capacity (veh/h)	1075			1269	1332		
High v/c (veh/h)	0.15			0.31	0.33		
Low Capacity (veh/h)	880			1056	1113		
Low v/c (veh/h)	0.18			0.38	0.39		
Intersection Summary							
Maximum v/c High			0.33				
Maximum v/c Low			0.39				
Intersection Capacity Utilization			37.5\%		CU Level	Service	A

Intersection	
Intersection Delay, s/veh	5.4
Intersection LOS	A

Approach	EB	NB	SB
Entry Lanes	2	2	2
Conflicting Circle Lanes	2	2	2
Adj Approach Flow, veh/h	157	398	437
Demand Flow Rate, veh/h	160	416	455
Vehicles Circulating, veh/h	339	114	479
Vehicles Exiting, veh/h	167	385	3.186
Follow-Up Headway, s	3.186	3.186	0
Ped Vol Crossing Leg, \#/h	0	0	1.000
Ped Cap Adj	1.000	1.000	5.4
Approach Delay, s/veh	5.2	5.5	A

Lane	Left	Right	Left	Right	Left	Right
Designated Moves	L	TR	LT	TR	LT	TR
Assumed Moves	L	TR	LT	TR	LT	TR
RT Channelized						
Lane Util	0.712	0.287	0.471	0.529	0.470	0.530
Critical Headway, s	4.293	4.113	4.293	4.113	4.293	4.113
Entry Flow, veh/h	114	46	196	220	214	241
Cap Entry Lane, veh/h	876	891	1037	1043	1088	1090
Entry HV Adj Factor	0.982	0.978	0.953	0.958	0.959	0.961
Flow Entry, veh/h	112	45	187	211	205	232
Cap Entry, veh/h	861	872	989	999	1043	1047
V/C Ratio	0.130	0.052	0.189	0.211	0.197	0.221
Control Delay, s/veh	5.5	4.6	5.4	5.6	5.3	5.5
LOS	A	A	A	A	A	A
95th \%tile Queue, veh	0	0	1	1	1	1

	\rightarrow	\geqslant	\leftarrow	\dagger	\downarrow
Lane Group	EBT	EBR	WBT	NBT	SBT
Lane Group Flow (vph)	227	21	147	273	363
v/c Ratio	0.59	0.04	0.25	0.39	0.57
Control Delay	19.5	1.2	5.0	12.0	13.7
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	19.5	1.2	5.0	12.0	13.7
Queue Length 50th (m)	11.2	0.0	1.0	12.2	15.4
Queue Length 95th (m)	35.3	1.1	10.7	34.0	45.1
Internal Link Dist (m)	223.6		126.7	770.1	323.4
Turn Bay Length (m)		10.0			
Base Capacity (vph)	676	903	961	1229	1096
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.34	0.02	0.15	0.22	0.33

[^5]

	\rightarrow	\geqslant	\checkmark	\downarrow	4	p
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Group Flow (vph)	360	161	129	132	101	111
v/c Ratio	0.36	0.10	0.46	0.11	0.25	0.25
Control Delay	17.2	0.1	43.7	11.5	40.2	8.4
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	17.2	0.1	43.7	11.5	40.2	8.4
Queue Length 50th (m)	46.3	0.0	16.1	14.3	19.7	0.0
Queue Length 95th (m)	70.4	0.0	19.8	26.7	35.2	14.3
Internal Link Dist (m)	190.0			351.8	113.5	
Turn Bay Length (m)		40.0	50.0			
Base Capacity (vph)	994	1601	462	1235	402	446
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.36	0.10	0.28	0.11	0.25	0.25

[^6]

Queues
6050: PTH 10/18th St \& Patricia Ave
10-12-2022

	$\stackrel{ }{*}$	\rightarrow	7	\downarrow	\checkmark	4	4	\dagger	\%		\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Group Flow (vph)	178	182	139	36	96	61	77	330	51	73	261	140
v / C Ratio	0.72	0.53	0.34	0.20	0.28	0.17	0.49	0.16	0.05	0.48	0.13	0.09
Control Delay	49.9	37.0	3.6	40.6	41.5	4.7	68.9	10.8	1.1	62.0	13.4	0.1
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	49.9	37.0	3.6	40.6	41.5	4.7	68.9	10.8	1.1	62.0	13.4	0.1
Queue Length 50th (m)	38.6	30.0	0.1	7.2	19.5	0.0	18.8	15.1	0.0	16.7	14.2	0.0
Queue Length 95th (m)	59.3	44.3	2.5	15.3	31.5	6.4	27.2	29.8	2.2	30.8	26.8	0.0
Internal Link Dist (m)		351.8			274.1			180.0			292.9	
Turn Bay Length (m)	75.0			75.0		60.0	90.0		75.0	90.0		75.0
Base Capacity (vph)	512	716	711	370	716	676	313	2073	988	298	2066	1601
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.35	0.25	0.20	0.10	0.13	0.09	0.25	0.16	0.05	0.24	0.13	0.09

[^7]

Queues
6250: PTH 10/18th St

	4		4	4	\downarrow	\downarrow
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Group Flow (vph)	112	45	50	348	323	114
v/c Ratio	0.58	0.21	0.38	0.13	0.13	0.10
Control Delay	62.5	15.4	60.8	3.3	4.1	0.7
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	62.5	15.4	60.8	3.3	4.1	0.7
Queue Length 50th (m)	25.5	0.0	11.5	8.1	4.4	0.0
Queue Length 95th (m)	42.1	10.5	23.5	14.2	7.5	0.0
Internal Link Dist (m)	91.8			168.8	180.0	
Turn Bay Length (m)		60.0	75.0			75.0
Base Capacity (vph)	551	524	327	2753	2393	1138
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.20	0.09	0.15	0.13	0.13	0.10

[^8]

	\rangle			t	\checkmark	4	4	4	7	\checkmark	\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Right Turn Channelized												
Traffic Volume (veh/h)	35	41	64	280	89	149	57	313	140	131	338	78
Future Volume (veh/h)	35	41	64	280	89	149	57	313	140	131	338	78
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	38	45	70	304	97	162	62	340	152	142	367	85
Approach Volume (veh/h)		153			563			554			594	
Crossing Volume (veh/h)		813			440			225			463	
High Capacity (veh/h)		725			979			1161			961	
High v/c (veh/h)		0.21			0.57			0.48			0.62	
Low Capacity (veh/h)		571			795			958			779	
Low v/c (veh/h)		0.27			0.71			0.58			0.76	

Intersection Summary

Maximum v/c High	0.62		
Maximum v/c Low	0.76	ICU Level of Service	F
Intersection Capacity Utilization	96.7%		

Intersection								
Intersection Delay, s/veh	25.0							
Intersection LOS	C							
Approach		EB		WB		NB		SB
Entry Lanes		1		1		1		1
Conflicting Circle Lanes		1		1		1		1
Adj Approach Flow, veh/h		153		563		554		594
Demand Flow Rate, veh/h		157		577		575		617
Vehicles Circulating, veh/h		840		459		231		475
Vehicles Exiting, veh/h		252		347		766		561
Follow-Up Headway, s		3.186		3.186		3.186		3.186
Ped Vol Crossing Leg, \#/h		0		0		0		0
Ped Cap Adj		1.000		1.000		1.000		1.000
Approach Delay, s/veh		12.8		27.2		14.5		35.7
Approach LOS		B		D		B		E
Lane	Left		Left		Left		Left	
Designated Moves	LTR		LTR		LTR		LTR	
Assumed Moves	LTR		LTR		LTR		LTR	
RT Channelized								
Lane Util	1.000		1.000		1.000		1.000	
Critical Headway, s	5.193		5.193		5.193		5.193	
Entry Flow, veh/h	157		577		575		617	
Cap Entry Lane, veh/h	488		714		897		703	
Entry HV Adj Factor	0.973		0.976		0.963		0.962	
Flow Entry, veh/h	153		563		554		594	
Cap Entry, veh/h	475		697		864		676	
V/C Ratio	0.322		0.808		0.641		0.878	
Control Delay, s/veh	12.8		27.2		14.5		35.7	
LOS	B		D		B		E	
95th \%tile Queue, veh	1		8		5		11	

	4			7			4	\dagger	$>$		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow	「		\$			¢			¢	
Traffic Volume (veh/h)	110	20	20	6	26	67	25	334	6	89	406	187
Future Volume (Veh/h)	110	20	20	6	26	67	25	334	6	89	406	187
Sign Control		Stop			Stop			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	120	22	22	7	28	73	27	363	7	97	441	203
Pedestrians												
Lane Width (m)												
Walking Speed (m / s)												
Percent Blockage												
Right turn flare (veh)			1									
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC , conficting volume	1244	1160	542	1179	1258	366	644			370		
vC1, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu , unblocked vol	1244	1160	542	1179	1258	366	644			370		
tC , single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free \%	0	87	96	95	82	89	97			92		
cM capacity (veh/h)	106	174	540	133	152	679	941			1189		
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	164	108	397	741								
Volume Left	120	7	27	97								
Volume Right	22	73	7	203								
cSH	128	314	941	1189								
Volume to Capacity	1.29	0.34	0.03	0.08								
Queue Length 95th (m)	79.4	11.3	0.7	2.0								
Control Delay (s)	240.5	22.4	0.9	2.0								
Lane LOS	F	C	A	A								
Approach Delay (s)	240.5	22.4	0.9	2.0								
Approach LOS	F	C										
Intersection Summary												
Average Delay			31.0									
Intersection Capacity Utilization			80.8\%	ICU Level of Service					D			
Analysis Period (min)			15									

	4	\rightarrow	\geqslant	7	\bullet	4	4	\uparrow	$>$	*	\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow			*			${ }_{*}$			¢	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	44	38	3	168	81	140	10	337	139	132	367	75
Future Volume (vph)	44	38	3	168	81	140	10	337	139	132	367	75
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	48	41	3	183	88	152	11	366	151	143	399	82

Direction, Lane \#	EB 1	WB 1	NB 1	SB 1
Volume Total (vph)	92	423	528	624
Volume Leff (vph)	48	183	11	143
Volume Right (vph)	3	152	151	82
Hadj (s)	0.12	-0.10	-0.13	0.00
Departure Headway (s)	9.4	7.5	7.2	7.3
Degree Utilization, x	0.24	0.88	1.06	1.27
Capacity (veh/h)	368	474	507	499
Control Delay (s)	15.3	44.6	82.9	160.8
Approach Delay (s)	15.3	44.6	82.9	160.8
Approach LOS	C	E	F	F

Intersection Summary			
Delay	98.6		F
Level of Service	F	ICU Level of Service	
Intersection Capacity Utilization	93.8%		
Analysis Period (min)	15		

	*		4	4	1	\pm	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	M ${ }^{\text {F }}$			\uparrow	$\hat{\beta}$		
Sign Control	Stop			Stop	Stop		
Traffic Volume (vph)	156	154	171	312	311	213	
Future Volume (vph)	156	154	171	312	311	213	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	170	167	186	339	338	232	
Direction, Lane \#	EB 1	NB 1	SB 1				
Volume Total (vph)	337	525	570				
Volume Left (vph)	170	186	0				
Volume Right (vph)	167	0	232				
Hadj (s)	-0.16	0.10	-0.21				
Departure Headway (s)	6.7	6.3	5.9				
Degree Utilization, x	0.63	0.91	0.94				
Capacity (veh/h)	516	562	602				
Control Delay (s)	20.5	44.3	46.7				
Approach Delay (s)	20.5	44.3	46.7				
Approach LOS	C	E	E				
Intersection Summary							
Delay			39.7				
Level of Service			E				
Intersection Capacity Utilization			83.3\%		CU Level	Service	E
Analysis Period (min)			15				

	\rangle			t	\checkmark	4	4	4	7	\checkmark	\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Right Turn Channelized												
Traffic Volume (veh/h)	35	41	64	280	89	149	57	313	140	131	338	78
Future Volume (veh/h)	35	41	64	280	89	149	57	313	140	131	338	78
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	38	45	70	304	97	162	62	340	152	142	367	85
Approach Volume (veh/h)		153			563			554			594	
Crossing Volume (veh/h)		813			440			225			463	
High Capacity (veh/h)		725			979			1161			961	
High v/c (veh/h)		0.21			0.57			0.48			0.62	
Low Capacity (veh/h)		571			795			958			779	
Low v/c (veh/h)		0.27			0.71			0.58			0.76	

Intersection Summary

Maximum v/c High	0.62		
Maximum v/c Low	0.76	ICU Level of Service	F
Intersection Capacity Utilization	96.7%		

Intersection								
Intersection Delay, s/veh	25.0							
Intersection LOS	C							
Approach		EB		WB		NB		SB
Entry Lanes		1		1		1		1
Conflicting Circle Lanes		1		1		1		1
Adj Approach Flow, veh/h		153		563		554		594
Demand Flow Rate, veh/h		157		577		575		617
Vehicles Circulating, veh/h		840		459		231		475
Vehicles Exiting, veh/h		252		347		766		561
Follow-Up Headway, s		3.186		3.186		3.186		3.186
Ped Vol Crossing Leg, \#/h		0		0		0		0
Ped Cap Adj		1.000		1.000		1.000		1.000
Approach Delay, s/veh		12.8		27.2		14.5		35.7
Approach LOS		B		D		B		E
Lane	Left		Left		Left		Left	
Designated Moves	LTR		LTR		LTR		LTR	
Assumed Moves	LTR		LTR		LTR		LTR	
RT Channelized								
Lane Util	1.000		1.000		1.000		1.000	
Critical Headway, s	5.193		5.193		5.193		5.193	
Entry Flow, veh/h	157		577		575		617	
Cap Entry Lane, veh/h	488		714		897		703	
Entry HV Adj Factor	0.973		0.976		0.963		0.962	
Flow Entry, veh/h	153		563		554		594	
Cap Entry, veh/h	475		697		864		676	
V/C Ratio	0.322		0.808		0.641		0.878	
Control Delay, s/veh	12.8		27.2		14.5		35.7	
LOS	B		D		B		E	
95th \%tile Queue, veh	1		8		5		11	

	$\stackrel{ }{*}$	\rightarrow		7	\longleftarrow	4	4	\uparrow	$>$	\checkmark	\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Right Turn Channelized												
Traffic Volume (veh/h)	110	20	20	6	26	67	25	334	6	89	406	187
Future Volume (veh/h)	110	20	20		26	67	25	334	6	89	406	187
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	120	22	22	7	28	73	27	363	7	97	441	203
Approach Volume (veh/h)		164			108			397			741	
Crossing Volume (veh/h)		545			510			239			62	
High Capacity (veh/h)		900			926			1148			1319	
High v/c (veh/h)		0.18			0.12			0.35			0.56	
Low Capacity (veh/h)		725			748			947			1102	
Low v/c (veh/h)		0.23			0.14			0.42			0.67	
Intersection Summary												
Maximum v/c High			0.56									
Maximum v/c Low			0.67									
Intersection Capacity Utilization			82.0\%		CU Level	Service			E			

Intersection								
Intersection Delay, s/veh	12.9							
Intersection LOS	B							
Approach		EB		WB		NB		SB
Entry Lanes		1		1		1		1
Conflicting Circle Lanes		1		1		1		1
Adj Approach Flow, veh/h		164		108		397		741
Demand Flow Rate, veh/h		166		110		416		769
Vehicles Circulating, veh/h		569		531		243		64
Vehicles Exiting, veh/h		264		128		492		577
Follow-Up Headway, s		3.186		3.186		3.186		3.186
Ped Vol Crossing Leg, \#/h		0		0		0		0
Ped Cap Adj		1.000		1.000		1.000		1.000
Approach Delay, s/veh		9.0		7.4		10.3		15.9
Approach LOS		A		A		B		C
Lane	Left		Left		Left		Left	
Designated Moves	LTR		LTR		LTR		LTR	
Assumed Moves	LTR		LTR		LTR		LTR	
RT Channelized								
Lane Util	1.000		1.000		1.000		1.000	
Critical Headway, s	5.193		5.193		5.193		5.193	
Entry Flow, veh/h	166		110		416		769	
Cap Entry Lane, veh/h	640		664		886		1060	
Entry HV Adj Factor	0.985		0.986		0.954		0.964	
Flow Entry, veh/h	164		108		397		741	
Cap Entry, veh/h	630		655		845		1021	
VIC Ratio	0.260		0.166		0.469		0.726	
Control Delay, s/veh	9.0		7.4		10.3		15.9	
LOS	A		A		B		C	
95th \%tile Queue, veh	1		1		3		7	

	\rangle	\rightarrow		\dagger	\longleftarrow	4	4	\uparrow	p	\checkmark	\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Right Turn Channelized												
Traffic Volume (veh/h)	44	38	3	168	81	140	10	337	139	132	367	75
Future Volume (veh/h)	44	38	3	168	81	140	10	337	139	132	367	75
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	48	41	3	183	88	152	11	366	151	143	399	82
Approach Volume (veh/h)		92			423			528			624	
Crossing Volume (veh/h)		725			425			232			282	
High Capacity (veh/h)		779			991			1155			1110	
High v/c (veh/h)		0.12			0.43			0.46			0.56	
Low Capacity (veh/h)		618			806			952			912	
Low v/c (veh/h)		0.15			0.53			0.55			0.68	
Intersection Summary												
Maximum v/c High			0.56									
Maximum v/c Low			0.68									
Intersection Capacity Utilization			93.8\%		CU Level	Service			F			

Intersection								
Intersection Delay, s/veh	15.9							
Intersection LOS	C							
Approach		EB		WB		NB		SB
Entry Lanes		1		1		1		1
Conflicting Circle Lanes		1		1		1		1
Adj Approach Flow, veh/h		92		423		528		624
Demand Flow Rate, veh/h		94		432		538		637
Vehicles Circulating, veh/h		740		433		237		288
Vehicles Exiting, veh/h		185		342		597		577
Follow-Up Headway, s		3.186		3.186		3.186		3.186
Ped Vol Crossing Leg, \#/h		0		0		0		0
Ped Cap Adj		1.000		1.000		1.000		1.000
Approach Delay, s/veh		9.1		14.9		13.2		20.0
Approach LOS		A		B		B		C
Lane	Left		Left		Left		Left	
Designated Moves	LTR		LTR		LTR		LTR	
Assumed Moves	LTR		LTR		LTR		LTR	
RT Channelized								
Lane Util	1.000		1.000		1.000		1.000	
Critical Headway, s	5.193		5.193		5.193		5.193	
Entry Flow, veh/h	94		432		538		637	
Cap Entry Lane, veh/h	539		733		892		847	
Entry HV Adj Factor	0.981		0.980		0.981		0.980	
Flow Entry, veh/h	92		423		528		624	
Cap Entry, veh/h	529		718		874		830	
VIC Ratio	0.174		0.589		0.603		0.752	
Control Delay, s/vehLOS	9.1		14.9		13.2		20.0	
	A		B		B		C	
LOS 95th \%tile Queue, veh	1		4		4		7	

	\downarrow	4	\dagger	P		\downarrow	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Right Turn Channelized							
Traffic Volume (veh/h)	147	18	96	92	14	78	
Future Volume (veh/h)	147	18	96	92	14	78	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	160	20	104	100	15	85	
Approach Volume (veh/h)	180		204			100	
Crossing Volume (veh/h)	104		15			160	
High Capacity (veh/h)	1277		1369			1222	
High v/c (veh/h)	0.14		0.15			0.08	
Low Capacity (veh/h)	1063		1147			1013	
Low v/c (veh/h)	0.17		0.18			0.10	
Intersection Summary							
Maximum v/c High			0.15				
Maximum v/c Low			0.18				
Intersection Capacity Utilization			31.9\%		CU Leve	Service	A

	7	\rightarrow		7		4	4	\dagger	7	\bullet	\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Right Turn Channelized												
Traffic Volume (veh/h)	51	82	33	10	120	34	46	280	14	41	288	88
Future Volume (veh/h)	51	82	33	10	120	34	46	280	14	41	288	88
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	55	89	36	11	130	37	50	304	15	45	313	96
Approach Volume (veh/h)		180			178			369			454	
Crossing Volume (veh/h)		369			409			189			191	
High Capacity (veh/h)		1036			1004			1194			1193	
High v/c (veh/h)		0.17			0.18			0.31			0.38	
Low Capacity (veh/h)		846			817			988			987	
Low v/c (veh/h)		0.21			0.22			0.37			0.46	
Intersection Summary												
Maximum v/c High			0.38									
Maximum v/c Low			0.46									
Intersection Capacity Utilization			56.1\%		CU Level	f Service			B			

Intersection								
Intersection Delay, s/veh	9.2							
Intersection LOS	A							
Approach		EB		WB		NB		SB
Entry Lanes		1		1		1		1
Conflicting Circle Lanes		1		1		1		1
Adj Approach Flow, veh/h		180		178		369		454
Demand Flow Rate, veh/h		184		182		385		473
Vehicles Circulating, veh/h		386		426		193		195
Vehicles Exiting, veh/h		282		152		377		413
Follow-Up Headway, s		3.186		3.186		3.186		3.186
Ped Vol Crossing Leg, \#/h		0		0		0		0
Ped Cap Adj		1.000		1.000		1.000		1.000
Approach Delay, s/veh		7.5		7.8		8.9		10.7
Approach LOS		A		A		A		B
Lane	Left		Left		Left		Left	
Designated Moves	LTR		LTR		LTR		LTR	
Assumed Moves	LTR		LTR		LTR		LTR	
RT Channelized								
Lane Util	1.000		1.000		1.000		1.000	
Critical Headway, s	5.193		5.193		5.193		5.193	
Entry Flow, veh/h	184		182		385		473	
Cap Entry Lane, veh/h	768		738		932		930	
Entry HV Adj Factor	0.979		0.980		0.958		0.961	
Flow Entry, veh/h	180		178		369		454	
Cap Entry, veh/h	752		723		892		893	
V/C Ratio	0.240		0.247		0.413		0.509	
Control Delay, s/veh	7.5		7.8		8.9		10.7	
LOS	A		A		A		B	
95th \%tile Queue, veh	1		1		2		3	

HCM Unsignalized Intersection Capacity Analysis 5030: Marylicia New \& 26th St Ext

	\rangle		4	\uparrow	\downarrow	\checkmark	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Right Turn Channelized							
Traffic Volume (veh/h)	156	154	171	312	311	213	
Future Volume (veh/h)	156	154	171	312	311	213	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	170	167	186	339	338	232	
Approach Volume (veh/h)	337			525	570		
Crossing Volume (veh/h)	338			170	186		
High Capacity (veh/h)	1062			1212	1197		
High v/c (veh/h)	0.32			0.43	0.48		
Low Capacity (veh/h)	869			1005	991		
Low v/c (veh/h)	0.39			0.52	0.58		
Intersection Summary							
Maximum v/c High			0.48				
Maximum v/c Low			0.58				
Intersection Capacity Utilization			83.3\%		CU Level	Service	E

	\rangle	\rightarrow		7		4	4	\dagger	+	\checkmark	\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Right Turn Channelized												
Traffic Volume (veh/h)	51	127	5	10	146	261	5	25	10	266	15	50
Future Volume (veh/h)	51	127	5	10	146	261	5	25	10	266	15	50
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	55	138	5	11	159	284	5	27	11	289	16	54
Approach Volume (veh/h)		198			454			43			359	
Crossing Volume (veh/h)		316			87			482			175	
High Capacity (veh/h)		1081			1294			947			1208	
High v/c (veh/h)		0.18			0.35			0.05			0.30	
Low Capacity (veh/h)		886			1079			766			1000	
Low v/c (veh/h)		0.22			0.42			0.06			0.36	
Intersection Summary												
Maximum v/c High			0.35									
Maximum v/c Low			0.42									
Intersection Capacity Utilization			67.7\%		CU Level	f Service			C			

Intersection								
Intersection Delay, s/veh	8.3							
Intersection LOS	A							
Approach		EB		WB		NB		SB
Entry Lanes		1		1		1		1
Conflicting Circle Lanes		1		1		1		1
Adj Approach Flow, veh/h		198		454		43		359
Demand Flow Rate, veh/h		207		469		48		368
Vehicles Circulating, veh/h		325		91		496		184
Vehicles Exiting, veh/h		227		452		35		376
Follow-Up Headway, s		3.186		3.186		3.186		3.186
Ped Vol Crossing Leg, \#/h		0		0		0		0
Ped Cap Adj		1.000		1.000		1.000		1.000
Approach Delay, s/veh		7.4		8.8		6.6		8.4
Approach LOS		A		A		A		A
Lane	Left		Left		Left		Left	
Designated Moves	LTR		LTR		LTR		LTR	
Assumed Moves	LTR		LTR		LTR		LTR	
RT Channelized								
Lane Util	1.000		1.000		1.000		1.000	
Critical Headway, s	5.193		5.193		5.193		5.193	
Entry Flow, veh/h	207		469		48		368	
Cap Entry Lane, veh/h	816		1032		688		940	
Entry HV Adj Factor	0.957		0.968		0.902		0.977	
Flow Entry, veh/h	198		454		43		359	
Cap Entry, veh/h	781		999		620		918	
V/C Ratio	0.254		0.455		0.070		0.391	
Control Delay, s/veh	7.4		8.8		6.6		8.4	
LOS	A		A		A		A	
95th \%tile Queue, veh	1		2		0		2	

	$\stackrel{ }{ }$	\rightarrow		7		4	4	\dagger	+	\checkmark	\downarrow	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Right Turn Channelized												
Traffic Volume (veh/h)	6	354	45	81	385	389	30	20	48	325	31	2
Future Volume (veh/h)	6	354	45	81	385	389	30	20	48	325	31	2
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	7	385	49	88	418	423	33	22	52	353	34	2
Approach Volume (veh/h)		441			929			107			389	
Crossing Volume (veh/h)		475			62			745			539	
High Capacity (veh/h)		952			1319			766			905	
High v/c (veh/h)		0.46			0.70			0.14			0.43	
Low Capacity (veh/h)		771			1102			607			729	
Low v/c (veh/h)		0.57			0.84			0.18			0.53	
Intersection Summary												
Maximum v/c High			0.70									
Maximum v/c Low			0.84									
Intersection Capacity Utilization			106.6\%		CU Level	f Service			G			

Intersection								
Intersection Delay, s/veh	23.6							
Intersection LOS	C							
Approach		EB		WB		NB		SB
Entry Lanes		1		1		1		1
Conflicting Circle Lanes		1		1		1		1
Adj Approach Flow, veh/h		441		929		107		389
Demand Flow Rate, veh/h		461		960		109		397
Vehicles Circulating, veh/h		485		63		771		563
Vehicles Exiting, veh/h		475		817		175		460
Follow-Up Headway, s		3.186		3.186		3.186		3.186
Ped Vol Crossing Leg, \#/h		0		0		0		0
Ped Cap Adj		1.000		1.000		1.000		1.000
Approach Delay, s/veh		18.7		30.0		9.9		17.5
Approach LOS		C		D		A		C
Lane	Left		Left		Left		Left	
Designated Moves	LTR		LTR		LTR		LTR	
Assumed Moves	LTR		LTR		LTR		LTR	
RT Channelized								
Lane Util	1.000		1.000		1.000		1.000	
Critical Headway, s	5.193		5.193		5.193		5.193	
Entry Flow, veh/h	461		960		109		397	
Cap Entry Lane, veh/h	696		1061		523		644	
Entry HV Adj Factor	0.956		0.968		0.978		0.981	
Flow Entry, veh/h	441		929		107		389	
Cap Entry, veh/h	665		1027		511		631	
V/C Ratio	0.663		0.905		0.209		0.617	
Control Delay, s/veh	18.7		30.0		9.9		17.5	
LOS	C		D		A		C	
95th \%tile Queue, veh	5		14		1		4	

	\rightarrow	\%	7		4	p	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Right Turn Channelized							
Traffic Volume (veh/h)	241	502	369	336	551	386	
Future Volume (veh/h)	241	502	369	336	551	386	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	262	546	401	365	599	420	
Approach Volume (veh/h)	808			766	1019		
Crossing Volume (veh/h)	401			599	262		
High Capacity (veh/h)	1010			862	1128		
High v/c (veh/h)	0.80			0.89	0.90		
Low Capacity (veh/h)	823			691	928		
Low v/c (veh/h)	0.98			1.11	1.10		
Intersection Summary							
Maximum v/c High			0.90				
Maximum v/c Low			1.11				
Intersection Capacity Utilization			73.7\%		Level	Service	D

Intersection			
Intersection Delay, s/veh	17.2		
Intersection LOS	C		
Approach	EB	WB	NB
Entry Lanes	2	2	2
Conflicting Circle Lanes	0	0	0
Adj Approach Flow, veh/h	808	766	1019
Demand Flow Rate, veh/h	832	792	1039
Vehicles Circulating, veh/h	409	611	275
Vehicles Exiting, veh/h	994	703	966
Follow-Up Headway, s	3.186	3.186	3.186
Ped Vol Crossing Leg, \#/h	0	0	0
Ped Cap Adj	1.000	1.000	1.000
Approach Delay, s/veh	17.5	19.8	14.9
Approach LOS	C	C	B

Lane	Left	Right	Left	Right	Left	Right
Designated Moves	LT	R	L	TR	L	TR
Assumed Moves	LT	R	L	TR	L	TR
RT Channelized						
Lane Util	0.331	0.669	0.516	0.484	0.588	0.412
Critical Headway, s	5.193	5.193	5.193	5.193	5.193	5.193
Entry Flow, veh/h	275	557	409	383	611	428
Cap Entry Lane, veh/h	751	751	613	613	858	858
Entry HV Adj Factor	0.952	0.980	0.980	0.952	0.980	0.981
Flow Entry, veh/h	262	546	401	365	599	420
Cap Entry, veh/h	715	736	601	584	841	842
V/C Ratio	0.366	0.742	0.667	0.624	0.712	0.499
Control Delay, s/veh	9.7	21.3	20.5	19.0	17.7	10.9
LOS	A	C	C	C	C	B
95th \%tile Queue, veh	2	7	5	4	6	3

	4	\rightarrow		7		4	4	\uparrow	$>$	\checkmark	\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Right Turn Channelized												
Traffic Volume (veh/h)	296	176	169	96	219	54	212	438	90	72	538	383
Future Volume (veh/h)	296	176	169	96	219	54	212	438	90	72	538	383
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	322	191	184	104	238	59	230	476	98	78	585	416
Approach Volume (veh/h)		697			401			804			1079	
Crossing Volume (veh/h)		767			1028			591			572	
High Capacity (veh/h)		753			608			868			881	
High v/c (veh/h)		0.93			0.66			0.93			1.22	
Low Capacity (veh/h)		595			471			696			708	
Low v/c (veh/h)		1.17			0.85			1.15			1.52	
Intersection Summary												
Maximum v/c High			1.22									
Maximum v/c Low			1.52									
Intersection Capacity Utilization			99.4\%		CU Level	f Service			F			

Intersection								
Intersection Delay, s/veh	31.2							
Intersection LOS	D							
Approach		EB		WB		NB		SB
Entry Lanes		2		2		2		2
Conflicting Circle Lanes		2		2		1		1
Adj Approach Flow, veh/h		697		401		804		1079
Demand Flow Rate, veh/h		717		416		835		1118
Vehicles Circulating, veh/h		800		1063		609		591
Vehicles Exiting, veh/h		909		381		908		888
Follow-Up Headway, s		3.186		3.186		3.186		3.186
Ped Vol Crossing Leg, \#/h		0		0		0		0
Ped Cap Adj		1.000		1.000		1.000		1.000
Approach Delay, s/veh		28.6		23.6		21.7		42.7
Approach LOS		D		C		C		E
Lane	Left	Right	Left	Right	Left	Right	Left	Right
Designated Moves	LT	R	LT	R	LT	TR	LT	TR
Assumed Moves	LT	R	LT	R	LT	TR	LT	TR
RT Channelized								
Lane Util	0.738	0.262	0.856	0.144	0.469	0.531	0.470	0.530
Critical Headway, s	4.293	4.113	4.293	4.113	5.193	5.193	5.193	5.193
Entry Flow, veh/h	529	188	356	60	392	443	525	593
Cap Entry Lane, veh/h	620	645	509	537	615	615	626	626
Entry HV Adj Factor	0.971	0.979	0.961	0.983	0.964	0.962	0.966	0.964
Flow Entry, veh/h	513	184	342	59	378	426	507	572
Cap Entry, veh/h	602	632	489	528	593	591	604	603
V/C Ratio	0.853	0.291	0.699	0.112	0.638	0.721	0.839	0.948
Control Delay, s/veh	35.4	9.5	26.2	8.2	19.3	23.8	33.6	50.7
LOS	E	A	D	A	C	C	D	F
95th \%tile Queue, veh	9	1	5	0	5	6	9	13

	7		4	\uparrow	\dagger	\downarrow	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Right Turn Channelized							
Traffic Volume (veh/h)	313	107	101	427	495	308	
Future Volume (veh/h)	313	107	101	427	495	308	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	340	116	110	464	538	335	
Approach Volume (veh/h)	456			574	873		
Crossing Volume (veh/h)	538			340	110		
High Capacity (veh/h)	905			1060	1271		
High v/c (veh/h)	0.50			0.54	0.69		
Low Capacity (veh/h)	730			868	1058		
Low v/c (veh/h)	0.62			0.66	0.83		
Intersection Summary							
Maximum v/c High			0.69				
Maximum v/c Low			0.83				
Intersection Capacity Utilization			65.6\%		CU Level	Service	C

	$\stackrel{ }{ }$	\rightarrow		7		4	4	\dagger	+	\checkmark	\downarrow	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Right Turn Channelized												
Traffic Volume (veh/h)	6	354	45	81	385	389	30	20	48	325	31	2
Future Volume (veh/h)	6	354	45	81	385	389	30	20	48	325	31	2
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	7	385	49	88	418	423	33	22	52	353	34	2
Approach Volume (veh/h)		441			929			107			389	
Crossing Volume (veh/h)		475			62			745			539	
High Capacity (veh/h)		952			1319			766			905	
High v/c (veh/h)		0.46			0.70			0.14			0.43	
Low Capacity (veh/h)		771			1102			607			729	
Low v/c (veh/h)		0.57			0.84			0.18			0.53	
Intersection Summary												
Maximum v/c High			0.70									
Maximum v/c Low			0.84									
Intersection Capacity Utilization			82.9\%		CU Level	f Service			E			

Intersection						
Intersection Delay, s/veh	13.0					
Intersection LOS	B					
Approach	EB		WB		NB	SB
Entry Lanes	1		2		1	1
Conflicting Circle Lanes	1		1		1	1
Adj Approach Flow, veh/h	441		929		107	389
Demand Flow Rate, veh/h	461		960		109	397
Vehicles Circulating, veh/h	485		63		771	563
Vehicles Exiting, veh/h	475		817		175	460
Follow-Up Headway, s	3.186		3.186		3.186	3.186
Ped Vol Crossing Leg, \#/h	0		0		0	0
Ped Cap Adj	1.000		1.000		1.000	1.000
Approach Delay, s/veh	18.7		8.7		9.9	17.5
Approach LOS	C		A		A	C
Lane	Left	Left	Right	Left		Left
Designated Moves	LTR	LT	R	LTR		LTR
Assumed Moves	LTR	LT	R	LTR		LTR
RT Channelized						
Lane Util	1.000	0.551	0.449	1.000		1.000
Critical Headway, s	5.193	5.193	5.193	5.193		5.193
Entry Flow, veh/h	461	529	431	109		397
Cap Entry Lane, veh/h	696	1061	1061	523		644
Entry HV Adj Factor	0.956	0.957	0.981	0.978		0.981
Flow Entry, veh/h	441	506	423	107		389
Cap Entry, veh/h	665	1015	1041	511		631
V/C Ratio	0.663	0.499	0.406	0.209		0.617
Control Delay, s/veh	18.7	9.5	7.8	9.9		17.5
LOS	C	A	A	A		C
95th \%tile Queue, veh	5	3	2	1		4

	\rightarrow	\geqslant		\dagger	\downarrow
Lane Group	EBT	EBR	WBT	NBT	SBT
Lane Group Flow (vph)	142	22	108	397	741
v/c Ratio	0.50	0.06	0.26	0.36	0.72
Control Delay	24.7	1.9	9.4	8.4	15.9
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	24.7	1.9	9.4	8.4	15.9
Queue Length 50th (m)	12.1	0.0	2.7	18.3	45.5
Queue Length 95th (m)	25.5	1.5	12.1	43.0	\#129.0
Internal Link Dist (m)	223.6		126.7	770.1	323.4
Turn Bay Length (m)		10.0			
Base Capacity (vph)	484	635	668	1069	1014
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.29	0.03	0.16	0.37	0.73
Intersection Summary					
\# 95th percentile volume exceeds capacity, queue may be longer.Queue shown is maximum after two cycles.					

[^9]

	$\stackrel{ }{*}$	\rightarrow	7	\downarrow	4	4	4	\dagger	p		\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Group Flow (vph)	322	191	184	104	238	59	230	476	98	78	585	416
v / C Ratio	0.91	0.29	0.27	0.26	0.37	0.09	0.79	0.32	0.13	0.53	0.51	0.26
Control Delay	56.1	20.6	2.7	27.2	29.0	0.3	66.8	18.3	3.1	66.0	36.9	0.4
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	56.1	20.6	2.7	27.2	29.0	0.3	66.8	18.3	3.1	66.0	36.9	0.4
Queue Length 50th (m)	71.1	19.1	0.0	16.8	40.0	0.0	47.0	40.2	4.3	17.8	60.4	0.0
Queue Length 95th (m)	\#112.2	31.7	3.6	27.8	55.4	0.0	72.7	52.1	7.2	33.5	87.2	0.0
Internal Link Dist (m)		351.8			274.1			180.0			292.9	
Turn Bay Length (m)	75.0			75.0		60.0	90.0		75.0	90.0		75.0
Base Capacity (vph)	422	777	786	472	777	758	343	1509	750	166	1151	1601
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.76	0.25	0.23	0.22	0.31	0.08	0.67	0.32	0.13	0.47	0.51	0.26

Intersection Summary

\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.

Queues
6250: Annex Access \& PTH 10/18th St

	4		4	\dagger	\downarrow	\downarrow
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Group Flow (vph)	340	116	110	464	538	335
v/c Ratio	0.80	0.25	0.59	0.20	0.31	0.34
Control Delay	56.9	7.0	63.0	8.9	8.2	2.0
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	56.9	7.0	63.0	8.9	8.2	2.0
Queue Length 50th (m)	75.7	0.0	25.1	20.5	9.8	0.0
Queue Length 95th (m)	99.1	13.0	41.8	34.1	42.5	6.1
Internal Link Dist (m)	129.4			191.2	180.0	
Turn Bay Length (m)		60.0	75.0			75.0
Base Capacity (vph)	655	660	283	2302	1761	976
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.52	0.18	0.39	0.20	0.31	0.34

[^10]

	\rightarrow	\geqslant		4	\dagger	*	\downarrow
Lane Group	EBT	EBR	WBT	NBL	NBT	SBL	SBT
Lane Group Flow (vph)	142	22	108	27	370	97	644
v/c Ratio	0.45	0.05	0.24	0.07	0.34	0.16	0.60
Control Delay	21.1	1.8	8.6	7.9	8.7	8.2	11.5
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	21.1	1.8	8.6	7.9	8.7	8.2	11.5
Queue Length 50th (m)	9.1	0.0	2.0	1.0	15.9	3.7	30.9
Queue Length 95th (m)	25.4	1.5	11.9	4.9	40.2	12.6	80.5
Internal Link Dist (m)	223.6		126.7		770.1		323.4
Turn Bay Length (m)		10.0		30.0		30.0	
Base Capacity (vph)	557	722	757	432	1298	724	1267
Starvation Cap Reductn	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0
Reduced v/c Ratio	0.25	0.03	0.14	0.06	0.29	0.13	0.51

[^11]

APPENDIX D: Traffic Signal Warrant Analysis

Appendix
Spreadsheets

RESIDENTIAL \& SCHOOL UNITS - BY TYPE - PHASED DEVELOPMENT

- All interim scenario build out based on assumed phasing

Assume school in B, SFH in I

- DSFM school in H

COMMERCIAL UNITS - BY TYPE - PHASED DEVELOPMENT

\% of																
Zone	Supply Location	Type	Area	Supply Location	Location Supply	2052	\% at 2047	2047	\% at 2042	2042	$\begin{gathered} \text { Supply } \\ \% \text { at } 2037 \\ \hline \end{gathered}$	2037	\% at 2032	2032	\% at 2027	2027
E					37.7	37.7		0		0		0		0		0
G					640.5	640.5	1	641	1	641	1	641	1	641	0.5	320

Information aut		Forecast			Funding		
${ }_{\text {leem }}^{\text {Leleterstreets }}$	Triger	Horizon	Trigger ationale	Capacity Check	B6 Share	Dev Share	Funding Ration
Brookwod South - Connection to a akeveew Orive	Startof 2 one B Development	2022				10\%\%	Strictly developmentrelated
Brookwood South - Connection to Plateau rive	Starto forone B Development	${ }_{2022}^{2027}$				100\%	Strictly develomement rated
Brokkod South - Connection to 34th Street	B B 55\% Develomment	${ }_{2}^{2027}$	50% of zone B generates 1,000 vpd, any more is way too much for Palatea Dive			100\%	Strictly developmentr reated
Brookwood South- Connection to patricid Avenue Lakevew Orive Exension- North orrion	Brookwood Sout Phase 2 Development Brookwood Suth Phase 4 Develoment	${ }_{2032}^{2032}$				100\%	
Lakeview Drive Extension - South Portion	Brookwood soutr Phase 2 Development	2032	Not needed for capacity, ist convenience and constuction access			100\%	Strictly develoomentrelated
Proposed Esat-West Collector- Brookwood South	zone 8.50% Development	2027				100\%	Hyd develomentr elatee
		${ }_{2022}^{2032}$		2027 Po o w without		- 90%	Share based on 2052 PD PDOT, 2 26th suth of Maryland Strictl develoment reated
Bellafield - Connection to Patricia Avenue	Startof ozoere F Develomment	2032	Access to one F , option for construction routing			100\%	Strictly development related
Proposed Eas-Westst collector- Bellafield	Starto fonoe E Development	2037				${ }^{100 \%}$	Strictly develomenent realted
Anen Lands -Residential Connection to Patricia	Start of One G Residential Development	${ }_{2022}^{2022}$				(100\%	
Amnex Lands - Commercial Connection to 18th stre	Need for 1 mprovements at 18 St 8 Patricia	2027				100\%	Stricly development reated
Annex Lands Residential colector	Wh develomenti in One 6	2027				10\%\%	Strictly development related
Annex Lands interna Commercial Collectors	With development in 2 one 6	2027				100\%	Strictly developmentrelated
Arteria Streets							
	Starlot Pone Residentala Development	${ }_{2027}^{2022}$				${ }_{90 \%}^{95 \%}$	
Patricica ve Pe Paing -34th Street to West	Brookwood Sout Phase 2 Development	2032	vide paved surface to 0 Brookwood Suth C			75\%	Share based on 2052 PD ADT, west of 3
Patricia Ave Widening	ed for Improvements at 18 8t \& Patricia	227	at 18th			85\%	based on 2052 PD
18th Street Widening	Need for Improvements at 18th \& Paticia	2027	Includ with improvements at 18th Street and Patricia Avenue			60\%	Share based on 2052 PD AOT, north and suth of Patric
Exteral Street Connections							
	${ }_{\text {Futur exteral Development }}^{\substack{\text { Futur } \\ \text { Future xxemal Develoment }}}$	N/A				${ }^{100 \%}$	Strictly development related, can share with futur develomment Strictld develomenent elated, an share with future develomment
Bellafield to Suth	Future Exteral Development	N/A				10\%	Strictly development related, , an share with fut
Belafield to Brentwood Village	Start of Zone P Development						ed for connetivity
Amnex lands to West	Future Exteral Development	N/A				100\%	Strictly development related, can share with future developmen
Intersections							
344 Street $\&$ Aberdeen Averue Roundabout Aberdeen Avenue \downarrow Ourum Orive	As soon as sosssile As son a s ossible	${ }_{2022}^{2022}$	Constrution stagin will e easie with less traftic			${ }_{\text {25\% }}^{60 \%}$	Shared based on 2052 P P D AD, total entering volume Shared based on 2525 P P A AT, tota entering volume
34 Sh Street P Proposed Collector Roundabout	Zone 8 >50\% Developoment	2027	Construt as part of collectorstreet cone				Shared based on 2052 PDPAOT , total entering volum
34th Street \& Paticicia Avenue Roundabout	Zone 8 B50\% Develoloment	2027	Include as parto f paving on Patricia Avenue to th			75\%\%	Shared based on 2052 PD ADT, total entering volume
		2032 2032	Include with sưh portion of takevee Dirive			${ }_{70 \%}^{100 \%}$	
2 2th Street P Proposed colector Roundabut	Start of Pone F Develoloment	2032				100\%	Strictly developmentrelated
	Stara fo fone D Development Sarat of one o Develomment	${ }_{2022}^{2022}$				95\%	Shared based on 2052 P PD ADT, total entering volume Shared dased on 2052 P P ATT, toat entering volume
18 Sth Street \& Patricicia Avenue Signals + Turn lanes	Need for 1 mprovements at 18th \& Patricia	2027		Needed in 2027 PD		65\%	Shared based on 2052 PD ADT, total entering youme
188 h Street Commercial Access Signals + Turr L Lanes	Need for Improvements at 18th \& Paticicia	2027	Includ with improvements at 18 th Stret and Patricia Avenue			65\%	Shared based on 2052 PD AD, total entering volume
Traficic Calming							
Platea Dive	Start ff Pone D Development	2022				${ }^{100 \%}$	Required for traffic from Brookwod Suut / Brookwood North
Durum dive Marauis orive	Monitor speads Monitor speeds					年	ired for traficic fom Bellafield
Marrand Avenue	Monitor Speeds					50\%	Shared bseed on 2052 PD AOT, Marvand Avenue east of 26 h Street
Active Transorataion Praths							
	Brookwood sout Phase 2 Development Zone 8550% Develoment	${ }_{2027}^{2032}$	Proceed with develomenent of collector street and local street network Wait for some demand fom Brookwod sout			100\% 100\%	
Brookwood South - 3 tht Street	Zone $\mathrm{B} 550 \%$ Develolomment	2027	Proceed with developmentin in one Beand 7 One C C path along collector			100\%	Strictly developmenent realated
Brookwood Sout - Proposed East-West Collector	2one B,50\%\% Development	2027	Proceed with develomentof of colector street network			100\%	Strictly developmentr elated
		${ }_{2027}^{2032}$	Wait for development tos tart reaching the sout end of the SPA Wait forsone demand fom rookwood suuth			100\%	
Bellafied - Marland Avenue Row Zone J	Zone I localistreets	2022	Proceed with local streets in ZoneJ			100\%	Strictly developmentreleated
Bellafield - West of Deriggo (Marquis) Dive	zone D Local Streets	2027	Proceed with development fof ocal street network			100\%	Strictly development related
		${ }_{2037}^{2032}$	Proceed with develommento of loal street network Proced with develomment of colectorsteet newwork			100\%	Strictly develomenent realted Strictld develomentreated
Bellafield -26th Street Extension	Start of Tone f Develoloment	2032	Proceed with development of collector street network			100\%	Strictly development related
	Starto foone E Development Completion of ofsw school	${ }_{2027}^{2037}$	Wait for development to start reaching the south end of the SPA Wait or chool			100\% 100\%	Strictly developmentrealed
Annex Lands - Proposed Residential Collector	With develommentin zone 6	2027	Proceed with development of ollector street network			100\%	Strictly development reated
Annex Lands - Internal	With developmentin zone G	2027	Proceed with develomentof ofolector street network			100\%	Strictly development reated
Amper Lands - Paticicia Avenue Commercial Access	With developmentin in one 6 With developmenti Oone 6	${ }_{2027}^{2027}$	Proced with develomenen of cololectos street network			100\%	Strictly develomenent realed Strictl development reateed
Active Transporation - Crossings							
Richmond Avenue Westof 3 Sth Stret	Exsting desire line	2022	Warran f or crossing under existing conditions			0\%	Existing demand
34 Street suth of Aberdeen Avenue	2one 8 5 50\% Development	2027	Construct as part of coridor connecting brookw			100\%	Stricly developmentr elated
		${ }_{2042}^{2042}$	Include in initial onstuction Wait or school			100\%	Strictly develomenen related
Belafield -26th Stree a t Connection to rentwood Village	Start of Zone f Development	2032	Incude in initial constrution			100\%	Strictly develomentr elated
	Starto of one f Development Completion of Sfew school	${ }_{2027}^{2032}$	Wait fors shool			100\% 100\%	Strictly develomenent realed strictly develomentreated
Annex Lands - Patricica veneue Commericial Access at titeral collector	With developmenti T Ono 6	2027	Incude in initid construction			100\%	Strictly developmentreatated
Trasit							
Sesice tobrookwood south		${ }_{2037}^{2042}$	Wait unticlolector networkin place, subustantal demand Wait until colector network in pace, sustanaid demand			${ }_{\text {100\% }}^{\text {100\% }}$	Strictly develomenentrealed Strictl develomenent reated

	$\stackrel{*}{ }$	\rightarrow		7		4	4	\uparrow	1		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Right Turn Channelized												
Traffic Volume (veh/h)	61	73	51	104	25	112	38	318	187	213	187	20
Future Volume (veh/h)	61	73	51	104	25	112	38	318	187	213	187	20
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	66	79	55	113	27	122	41	346	203	232	203	22
Approach Volume (veh/h)		200			262			590			457	
Crossing Volume (veh/h)		548			453			377			181	
High Capacity (veh/h)		898			969			1030			1202	
High v/c (veh/h)		0.22			0.27			0.57			0.38	
Low Capacity (veh/h)		723			786			840			995	
Low v/c (veh/h)		0.28			0.33			0.70			0.46	
Intersection Summary												
Maximum v/c High			0.57									
Maximum v/c Low			0.70									
Intersection Capacity Utilization			83.6\%		CU Level	f Service			E			

Intersection								
Intersection Delay, s/veh	16.1							
Intersection LOS	C							
Approach		EB		WB		NB		SB
Entry Lanes		1		1		1		1
Conflicting Circle Lanes		1		1		1		1
Adj Approach Flow, veh/h		200		262		590		457
Demand Flow Rate, veh/h		206		267		612		472
Vehicles Circulating, veh/h		565		472		387		185
Vehicles Exiting, veh/h		92		527		384		554
Follow-Up Headway, s		3.186		3.186		3.186		3.186
Ped Vol Crossing Leg, \#/h		0		0		0		0
Ped Cap Adj		1.000		1.000		1.000		1.000
Approach Delay, s/veh		10.1		10.2		25.1		10.4
Approach LOS		B		B		D		B
Lane	Left		Left		Left		Left	
Designated Moves	LTR		LTR		LTR		LTR	
Assumed Moves	LTR		LTR		LTR		LTR	
RT Channelized								
Lane Util	1.000		1.000		1.000		1.000	
Critical Headway, s	5.193		5.193		5.193		5.193	
Entry Flow, veh/h	206		267		612		472	
Cap Entry Lane, veh/h	642		705		767		939	
Entry HV Adj Factor	0.971		0.980		0.964		0.968	
Flow Entry, veh/h	200		262		590		457	
Cap Entry, veh/h	624		691		739		909	
V/C Ratio	0.321		0.379		0.798		0.503	
Control Delay, s/veh	10.1		10.2		25.1		10.4	
LOS	B		B		D		B	
95th \%tile Queue, veh	1		2		8		3	

	\rangle	\rightarrow		7		4	4	\uparrow	$>$		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Right Turn Channelized												
Traffic Volume (veh/h)	182	28	19	4	18	115	9	247	4	60	188	93
Future Volume (veh/h)	182	28	19	4	18	115	9	247	4	60	188	93
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	198	30	21	4	20	125	10	268	4	65	204	101
Approach Volume (veh/h)		249			149			282			370	
Crossing Volume (veh/h)		273			476			293			34	
High Capacity (veh/h)		1118			951			1100			1348	
High v/c (veh/h)		0.22			0.16			0.26			0.27	
Low Capacity (veh/h)		919			770			904			1128	
Low v/c (veh/h)		0.27			0.19			0.31			0.33	
Intersection Summary												
Maximum v/c High			0.27									
Maximum v/c Low			0.33									
Intersection Capacity Utilization			66.9\%		CU Level	f Service			C			

Intersection								
Intersection Delay, s/veh	7.7							
Intersection LOS	A							
Approach		EB		WB		NB		SB
Entry Lanes		1		1		1		1
Conflicting Circle Lanes		1		1		1		1
Adj Approach Flow, veh/h		249		149		282		370
Demand Flow Rate, veh/h		254		152		295		383
Vehicles Circulating, veh/h		284		493		299		34
Vehicles Exiting, veh/h		133		101		239		610
Follow-Up Headway, s		3.186		3.186		3.186		3.186
Ped Vol Crossing Leg, \#/h		0		0		0		0
Ped Cap Adj		1.000		1.000		1.000		1.000
Approach Delay, s/veh		7.6		7.9		8.7		7.0
Approach LOS		A		A		A		A
Lane	Left		Left		Left		Left	
Designated Moves	LTR		LTR		LTR		LTR	
Assumed Moves	LTR		LTR		LTR		LTR	
RT Channelized								
Lane Util	1.000		1.000		1.000		1.000	
Critical Headway, s	5.193		5.193		5.193		5.193	
Entry Flow, veh/h	254		152		295		383	
Cap Entry Lane, veh/h	851		690		838		1092	
Entry HV Adj Factor	0.982		0.978		0.955		0.966	
Flow Entry, veh/h	249		149		282		370	
Cap Entry, veh/h	835		675		800		1055	
V/C Ratio	0.299		0.220		0.352		0.351	
Control Delay, s/veh	7.6		7.9		8.7		7.0	
LOS	A		A		A		A	
95th \%tile Queue, veh	1		1		2		2	

	$\stackrel{ }{*}$	\rightarrow		7	\downarrow	4	4	\uparrow	7	\checkmark	\downarrow	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Right Turn Channelized												
Traffic Volume (veh/h)	75	70	6	128	48	138	10	281	188	114	161	25
Future Volume (veh/h)	75	70	6	128	48	138	10	281	188	114	161	25
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	82	76	7	139	52	150	11	305	204	124	175	27
Approach Volume (veh/h)		165			341			520			326	
Crossing Volume (veh/h)		438			398			282			202	
High Capacity (veh/h)		981			1013			1110			1182	
High v/c (veh/h)		0.17			0.34			0.47			0.28	
Low Capacity (veh/h)		797			825			912			977	
Low v/c (veh/h)		0.21			0.41			0.57			0.33	
Intersection Summary												
Maximum v/c High			0.47									
Maximum v/c Low			0.57									
Intersection Capacity Utilization			74.3\%		CU Level	Service			D			

Intersection								
Intersection Delay, s/veh	11.3							
Intersection LOS	B							
Approach		EB		WB		NB		SB
Entry Lanes		1		1		1		1
Conflicting Circle Lanes		1		1		1		1
Adj Approach Flow, veh/h		165		341		520		326
Demand Flow Rate, veh/h		169		348		530		332
Vehicles Circulating, veh/h		446		406		288		206
Vehicles Exiting, veh/h		92		412		327		548
Follow-Up Headway, s		3.186		3.186		3.186		3.186
Ped Vol Crossing Leg, \#/h		0		0		0		0
Ped Cap Adj		1.000		1.000		1.000		1.000
Approach Delay, s/veh		7.8		11.3		14.4		8.0
Approach LOS		A		B		B		A
Lane	Left		Left		Left		Left	
Designated Moves	LTR		LTR		LTR		LTR	
Assumed Moves	LTR		LTR		LTR		LTR	
RT Channelized								
Lane Util	1.000		1.000		1.000		1.000	
Critical Headway, s	5.193		5.193		5.193		5.193	
Entry Flow, veh/h	169		348		530		332	
Cap Entry Lane, veh/h	723		753		847		920	
Entry HV Adj Factor	0.979		0.980		0.981		0.980	
Flow Entry, veh/h	165		341		520		326	
Cap Entry, veh/h	708		738		831		902	
V/C Ratio	0.234		0.462		0.626		0.361	
Control Delay, s/veh	7.8		11.3		14.4		8.0	
LOS	A		B		B		A	
95th \%tile Queue, veh	1		2		4		2	

	\downarrow		\dagger	P		\downarrow	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Right Turn Channelized							
Traffic Volume (veh/h)	97	14	17	205	24	43	
Future Volume (veh/h)	97	14	17	205	24	43	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	105	15	18	223	26	47	
Approach Volume (veh/h)	120		241			73	
Crossing Volume (veh/h)	18		26			105	
High Capacity (veh/h)	1365		1357			1276	
High v/c (veh/h)	0.09		0.18			0.06	
Low Capacity (veh/h)	1144		1136			1062	
Low v/c (veh/h)	0.10		0.21			0.07	
Intersection Summary							
Maximum v/c High			0.18				
Maximum v/c Low			0.21				
Intersection Capacity Utilization			33.4\%		CU Leve	Service	A

	7	\rightarrow		7		4	4	\dagger	7	\bullet	\downarrow	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Right Turn Channelized												
Traffic Volume (veh/h)	94	178	86	17	119	31	67	134	10	18	165	26
Future Volume (veh/h)	94	178	86	17	119	31	67	134	10	18	165	26
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	102	193	93	18	129	34	73	146	11	20	179	28
Approach Volume (veh/h)		388			181			230			227	
Crossing Volume (veh/h)		217			321			315			220	
High Capacity (veh/h)		1168			1076			1081			1166	
High v/c (veh/h)		0.33			0.17			0.21			0.19	
Low Capacity (veh/h)		965			882			887			962	
Low v/c (veh/h)		0.40			0.21			0.26			0.24	
Intersection Summary												
Maximum v/c High			0.33									
Maximum v/c Low			0.40									
Intersection Capacity Utilization			64.9\%		CU Level	f Service			C			

Intersection								
Intersection Delay, s/veh	8.1							
Intersection LOS	A							
Approach		EB		WB		NB		SB
Entry Lanes		1		1		1		1
Conflicting Circle Lanes		1		1		1		1
Adj Approach Flow, veh/h		388		181		230		227
Demand Flow Rate, veh/h		396		185		238		237
Vehicles Circulating, veh/h		226		331		321		224
Vehicles Exiting, veh/h		235		228		301		292
Follow-Up Headway, s		3.186		3.186		3.186		3.186
Ped Vol Crossing Leg, \#/h		0		0		0		0
Ped Cap Adj		1.000		1.000		1.000		1.000
Approach Delay, s/veh		9.4		7.0		7.9		6.9
Approach LOS		A		A		A		A
Lane	Left		Left		Left		Left	
Designated Moves	LTR		LTR		LTR		LTR	
Assumed Moves	LTR		LTR		LTR		LTR	
RT Channelized								
Lane Util	1.000		1.000		1.000		1.000	
Critical Headway, s	5.193		5.193		5.193		5.193	
Entry Flow, veh/h	396		185		238		237	
Cap Entry Lane, veh/h	901		812		820		903	
Entry HV Adj Factor	0.980		0.981		0.965		0.958	
Flow Entry, veh/h	388		181		230		227	
Cap Entry, veh/h	883		796		791		865	
V/C Ratio	0.439		0.228		0.290		0.262	
Control Delay, s/veh	9.4		7.0		7.9		6.9	
LOS	A		A		A		A	
95th \%tile Queue, veh	2		1		1		1	

HCM Unsignalized Intersection Capacity Analysis 5030: Marylicia New \& 26th St Ext

	\Rightarrow		4	4	\downarrow	\checkmark	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Right Turn Channelized							
Traffic Volume (veh/h)	270	91	72	137	124	167	
Future Volume (veh/h)	270	91	72	137	124	167	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	293	99	78	149	135	182	
Approach Volume (veh/h)	392			227	317		
Crossing Volume (veh/h)	135			293	78		
High Capacity (veh/h)	1246			1100	1303		
High v/c (veh/h)	0.31			0.21	0.24		
Low Capacity (veh/h)	1035			904	1087		
Low v/c (veh/h)	0.38			0.25	0.29		
Intersection Summary							
Maximum v/c High			0.31				
Maximum v/c Low			0.38				
Intersection Capacity Utilization			58.5\%	ICU Level of Service			B

	4	\rightarrow		7		4	4	\uparrow	$>$		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Right Turn Channelized												
Traffic Volume (veh/h)	25	71	5	5	40	160	5	15	10	188	20	59
Future Volume (veh/h)	25	71	5	5	40	160	5	15	10	188	20	59
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	27	77	5	5	43	174	5	16	11	204	22	64
Approach Volume (veh/h)		109			222			32			290	
Crossing Volume (veh/h)		231			48			308			53	
High Capacity (veh/h)		1156			1334			1087			1329	
High v/c (veh/h)		0.09			0.17			0.03			0.22	
Low Capacity (veh/h)		953			1115			892			1110	
Low v/c (veh/h)		0.11			0.20			0.04			0.26	
Intersection Summary												
Maximum v/c High			0.22									
Maximum v/c Low			0.26									
Intersection Capacity Utilization			46.3\%		CU Level	f Service			A			

Intersection								
Intersection Delay, s/veh	5.8							
Intersection LOS	A							
Approach		EB		WB		NB		SB
Entry Lanes		1		1		1		1
Conflicting Circle Lanes		1		1		1		1
Adj Approach Flow, veh/h		109		222		32		290
Demand Flow Rate, veh/h		115		228		36		297
Vehicles Circulating, veh/h		237		51		317		55
Vehicles Exiting, veh/h		115		301		34		223
Follow-Up Headway, s		3.186		3.186		3.186		3.186
Ped Vol Crossing Leg, \#/h		0		0		0		0
Ped Cap Adj		1.000		1.000		1.000		1.000
Approach Delay, s/veh		5.5		5.4		5.3		6.2
Approach LOS		A		A		A		A
Lane	Left		Left		Left		Left	
Designated Moves	LTR		LTR		LTR		LTR	
Assumed Moves	LTR		LTR		LTR		LTR	
RT Channelized								
Lane Util	1.000		1.000		1.000		1.000	
Critical Headway, s	5.193		5.193		5.193		5.193	
Entry Flow, veh/h	115		228		36		297	
Cap Entry Lane, veh/h	892		1074		823		1069	
Entry HV Adj Factor	0.949		0.973		0.899		0.976	
Flow Entry, veh/h	109		222		32		290	
Cap Entry, veh/h	846		1045		740		1044	
V/C Ratio	0.129		0.212		0.044		0.278	
Control Delay, s/veh	5.5		5.4		5.3		6.2	
LOS	A		A		A		A	
95th \%tile Queue, veh	0		1		0		1	

	$\stackrel{ }{ }$	\rightarrow		7	-	4	4	\dagger	+	\checkmark	\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Right Turn Channelized												
Traffic Volume (veh/h)	2	212	56	25	111	79	91	36	91	160	13	3
Future Volume (veh/h)	2	212	56	25	111	79	91	36	91	160	13	3
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	2	230	61	27	121	86	99	39	99	174	14	3
Approach Volume (veh/h)		293			234			237			191	
Crossing Volume (veh/h)		215			140			406			247	
High Capacity (veh/h)		1170			1241			1006			1141	
High v/c (veh/h)		0.25			0.19			0.24			0.17	
Low Capacity (veh/h)		967			1031			819			940	
Low v/c (veh/h)		0.30			0.23			0.29			0.20	
Intersection Summary												
Maximum v/c High			0.25									
Maximum v/c Low			0.30									
Intersection Capacity Utilization			54.7\%		CU Level	f Service			A			

	\rightarrow	7	7		4	7	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Right Turn Channelized							
Traffic Volume (veh/h)	341	140	129	125	90	109	
Future Volume (veh/h)	341	140	129	125	90	109	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	371	152	140	136	98	118	
Approach Volume (veh/h)	523			276	216		
Crossing Volume (veh/h)	140			98	371		
High Capacity (veh/h)	1241			1283	1034		
High v/c (veh/h)	0.42			0.22	0.21		
Low Capacity (veh/h)	1031			1068	844		
Low v/c (veh/h)	0.51			0.26	0.26		
Intersection Summary							
Maximum v/c High			0.42				
Maximum v/c Low			0.51				
Intersection Capacity Utilization			40.1\%	ICU Level of Service			A

	\rangle	\rightarrow	7	7	\leftarrow		4	\dagger	\%		\downarrow	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Right Turn Channelized												
Traffic Volume (veh/h)	171	172	133	35	92	56	75	308	49	67	247	136
Future Volume (veh/h)	171	172	133	35	92	56	75	308	49	67	247	136
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	186	187	145	38	100	61	82	335	53	73	268	148
Approach Volume (veh/h)		518			199			470			489	
Crossing Volume (veh/h)		379			603			446			220	
High Capacity (veh/h)		1028			859			975			1166	
High v/c (veh/h)		0.50			0.23			0.48			0.42	
Low Capacity (veh/h)		839			689			791			962	
Low v/c (veh/h)		0.62			0.29			0.59			0.51	

Intersection Summary

Maximum v/c High	0.50		
Maximum v/c Low	0.62	ICU Level of Service	B
Intersection Capacity Utilization	59.5%		

Intersection								
Intersection Delay, s/veh	7.9							
Intersection LOS	A							
Approach		EB		WB		NB		SB
Entry Lanes		2		2		2		2
Conflicting Circle Lanes		2		2		2		2
Adj Approach Flow, veh/h		518		199		470		489
Demand Flow Rate, veh/h		534		206		490		506
Vehicles Circulating, veh/h		394		626		460		228
Vehicles Exiting, veh/h		340		324		468		604
Follow-Up Headway, s		3.186		3.186		3.186		3.186
Ped Vol Crossing Leg, \#/h		0		0		0		0
Ped Cap Adj		1.000		1.000		1.000		1.000
Approach Delay, s/veh		9.2		7.1		8.2		6.6
Approach LOS		A		A		A		A
Lane	Left	Right	Left	Right	Left	Right	Left	Right
Designated Moves	LT	R	LT	R	LT	TR	LT	TR
Assumed Moves	LT	R	LT	R	LT	TR	LT	TR
RT Channelized								
Lane Util	0.723	0.277	0.699	0.301	0.469	0.531	0.470	0.530
Critical Headway, s	4.293	4.113	4.293	4.113	4.293	4.113	4.293	4.113
Entry Flow, veh/h	386	148	144	62	230	260	238	268
Cap Entry Lane, veh/h	841	858	707	729	800	819	952	963
Entry HV Adj Factor	0.965	0.980	0.958	0.984	0.961	0.959	0.965	0.966
Flow Entry, veh/h	373	145	138	61	221	249	230	259
Cap Entry, veh/h	812	840	677	717	769	785	919	931
V/C Ratio	0.459	0.173	0.204	0.085	0.287	0.318	0.250	0.278
Control Delay, s/veh	10.4	6.0	7.7	5.9	8.0	8.3	6.5	6.7
LOS	B	A	A	A	A	A	A	A
95th \%tile Queue, veh	2	1	1	0	1	1	1	1

	4		4	\uparrow	\downarrow	\downarrow	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Right Turn Channelized							
Traffic Volume (veh/h)	110	43	50	322	302	113	
Future Volume (veh/h)	110	43	50	322	302	113	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	120	47	54	350	328	123	
Approach Volume (veh/h)	167			404	451		
Crossing Volume (veh/h)	328			120	54		
High Capacity (veh/h)	1070			1261	1328		
High v/c (veh/h)	0.16			0.32	0.34		
Low Capacity (veh/h)	877			1049	1109		
Low v/c (veh/h)	0.19			0.39	0.41		
Intersection Summary							
Maximum v/c High			0.34				
Maximum v/c Low			0.41				
Intersection Capacity Utilization			38.4\%		ICU Level of	Service	A

	\rangle	\rightarrow	7	7	\leftarrow	4	4	\uparrow	7	*	\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Right Turn Channelized												
Traffic Volume (veh/h)	35	41	68	283	89	149	60	330	142	131	355	78
Future Volume (veh/h)	35	41	68	283	89	149	60	330	142	131	355	78
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	38	45	74	308	97	162	65	359	154	142	386	85
Approach Volume (veh/h)		157			567			578			613	
Crossing Volume (veh/h)		836			462			225			470	
High Capacity (veh/h)		712			962			1161			956	
High v/c (veh/h)		0.22			0.59			0.50			0.64	
Low Capacity (veh/h)		560			780			958			775	
Low v/c (veh/h)		0.28			0.73			0.60			0.79	

Intersection Summary

Maximum v/c High	0.64		
Maximum v/c Low	0.79	ICU Level of Service	F
Intersection Capacity Utilization	97.3%		

Intersection								
Intersection Delay, s/veh	27.9							
Intersection LOS	D							
Approach		EB		WB		NB		SB
Entry Lanes		1		1		1		1
Conflicting Circle Lanes		1		1		1		1
Adj Approach Flow, veh/h		157		567		578		613
Demand Flow Rate, veh/h		161		581		600		637
Vehicles Circulating, veh/h		864		482		231		482
Vehicles Exiting, veh/h		255		349		794		581
Follow-Up Headway, s		3.186		3.186		3.186		3.186
Ped Vol Crossing Leg, \#/h		0		0		0		0
Ped Cap Adj		1.000		1.000		1.000		1.000
Approach Delay, s/veh		13.4		30.1		15.5		41.2
Approach LOS		B		D		C		E
Lane	Left		Left		Left		Left	
Designated Moves	LTR		LTR		LTR		LTR	
Assumed Moves	LTR		LTR		LTR		LTR	
RT Channelized								
Lane Util	1.000		1.000		1.000		1.000	
Critical Headway, s	5.193		5.193		5.193		5.193	
Entry Flow, veh/h	161		581		600		637	
Cap Entry Lane, veh/h	476		698		897		698	
Entry HV Adj Factor	0.974		0.976		0.963		0.962	
Flow Entry, veh/h	157		567		578		613	
Cap Entry, veh/h	464		681		864		671	
V/C Ratio	0.338		0.833		0.669		0.913	
Control Delay, s/veh	13.4		30.1		15.5		41.2	
LOS	B		D		C		E	
95th \%tile Queue, veh	1		9		5		12	

	\rangle	\rightarrow		7			4	\uparrow	P		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Right Turn Channelized												
Traffic Volume (veh/h)	111	20	21	6	26	67	26	354	6	90	427	189
Future Volume (veh/h)	111	20	21	6	26	67	26	354	6	90	427	189
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	121	22	23	7	28	73	28	385	7	98	464	205
Approach Volume (veh/h)		166			108			420			767	
Crossing Volume (veh/h)		569			534			241			63	
High Capacity (veh/h)		883			908			1147			1318	
High v/c (veh/h)		0.19			0.12			0.37			0.58	
Low Capacity (veh/h)		710			732			945			1101	
Low v/c (veh/h)		0.23			0.15			0.44			0.70	
Intersection Summary												
Maximum v/c High			0.58									
Maximum v/c Low			0.70									
Intersection Capacity Utilization			84.1\%		CU Level	Service			E			

Intersection								
Intersection Delay, s/veh	13.7							
Intersection LOS	B							
Approach		EB		WB		NB		SB
Entry Lanes		1		1		1		1
Conflicting Circle Lanes		1		1		1		1
Adj Approach Flow, veh/h		166		108		420		767
Demand Flow Rate, veh/h		168		110		440		796
Vehicles Circulating, veh/h		594		556		245		65
Vehicles Exiting, veh/h		267		129		517		601
Follow-Up Headway, s		3.186		3.186		3.186		3.186
Ped Vol Crossing Leg, \#/h		0		0		0		0
Ped Cap Adj		1.000		1.000		1.000		1.000
Approach Delay, s/veh		9.3		7.6		10.9		17.1
Approach LOS		A		A		B		C
Lane	Left		Left		Left		Left	
Designated Moves	LTR		LTR		LTR		LTR	
Assumed Moves	LTR		LTR		LTR		LTR	
RT Channelized								
Lane Util	1.000		1.000		1.000		1.000	
Critical Headway, s	5.193		5.193		5.193		5.193	
Entry Flow, veh/h	168		110		440		796	
Cap Entry Lane, veh/h	624		648		884		1059	
Entry HV Adj Factor	0.986		0.986		0.954		0.963	
Flow Entry, veh/h	166		108		420		767	
Cap Entry, veh/h	615		639		844		1020	
V/C Ratio	0.269		0.170		0.498		0.752	
Control Delay, s/veh	9.3		7.6		10.9		17.1	
LOS	A		A		B		C	
95th \%tile Queue, veh	1		1		3		7	

	4	\rightarrow		7			4	\uparrow	7	,	\downarrow	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Right Turn Channelized												
Traffic Volume (veh/h)	45	39	4	171	83	140	10	356	141	132	387	77
Future Volume (veh/h)	45	39	4	171	83	140	10	356	141	132	387	77
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	49	42	4	186	90	152	11	387	153	143	421	84
Approach Volume (veh/h)		95			428			551			648	
Crossing Volume (veh/h)		750			447			234			287	
High Capacity (veh/h)		763			974			1153			1106	
High v/c (veh/h)		0.12			0.44			0.48			0.59	
Low Capacity (veh/h)		605			790			951			908	
Low v/c (veh/h)		0.16			0.54			0.58			0.71	
Intersection Summary												
Maximum v/c High			0.59									
Maximum v/c Low			0.71									
Intersection Capacity Utilization			96.6\%		CU Level	Service			F			

Intersection								
Intersection Delay, s/veh	17.3							
Intersection LOS	C							
Approach		EB		WB		NB		SB
Entry Lanes		1		1		1		1
Conflicting Circle Lanes		1		1		1		1
Adj Approach Flow, veh/h		95		428		551		648
Demand Flow Rate, veh/h		97		437		562		661
Vehicles Circulating, veh/h		765		456		239		293
Vehicles Exiting, veh/h		189		345		623		600
Follow-Up Headway, s		3.186		3.186		3.186		3.186
Ped Vol Crossing Leg, \#/h		0		0		0		0
Ped Cap Adj		1.000		1.000		1.000		1.000
Approach Delay, s/veh		9.5		15.9		14.1		22.1
Approach LOS		A		C		B		C
Lane	Left		Left		Left		Left	
Designated Moves	LTR		LTR		LTR		LTR	
Assumed Moves	LTR		LTR		LTR		LTR	
RT Channelized								
Lane Util	1.000		1.000		1.000		1.000	
Critical Headway, s	5.193		5.193		5.193		5.193	
Entry Flow, veh/h	97		437		562		661	
Cap Entry Lane, veh/h	526		716		890		843	
Entry HV Adj Factor	0.981		0.980		0.981		0.980	
Flow Entry, veh/h	95		428		551		648	
Cap Entry, veh/h	516		702		873		826	
V/C Ratio	0.184		0.610		0.632		0.784	
Control Delay, s/veh	9.5		15.9		14.1		22.1	
LOS	A		C		B		C	
95th \%tile Queue, veh	1		4		5		8	

	\rangle	\rightarrow	7	7	\leftarrow	4	4	\uparrow	7	*	\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Right Turn Channelized												
Traffic Volume (veh/h)	53	85	34	10	123	37	47	296	14	44	303	91
Future Volume (veh/h)	53	85	34	10	123	37	47	296	14	44	303	91
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	58	92	37	11	134	40	51	322	15	48	329	99
Approach Volume (veh/h)		187			185			388			476	
Crossing Volume (veh/h)		388			431			198			196	
High Capacity (veh/h)		1021			986			1186			1188	
High v/c (veh/h)		0.18			0.19			0.33			0.40	
Low Capacity (veh/h)		832			801			981			982	
Low v/c (veh/h)		0.22			0.23			0.40			0.48	

Intersection Summary

Maximum v/c High	0.40		
Maximum v/c Low	0.48		B
Intersection Capacity Utilization	58.5%	ICU Level of Service	B

Intersection								
Intersection Delay, s/veh	9.7							
Intersection LOS	A							
Approach		EB		WB		NB		SB
Entry Lanes		1		1		1		1
Conflicting Circle Lanes		1		1		1		1
Adj Approach Flow, veh/h		187		185		388		476
Demand Flow Rate, veh/h		191		189		405		495
Vehicles Circulating, veh/h		405		449		202		200
Vehicles Exiting, veh/h		290		158		394		438
Follow-Up Headway, s		3.186		3.186		3.186		3.186
Ped Vol Crossing Leg, \#/h		0		0		0		0
Ped Cap Adj		1.000		1.000		1.000		1.000
Approach Delay, s/veh		7.8		8.2		9.4		11.3
Approach LOS		A		A		A		B
Lane	Left		Left		Left		Left	
Designated Moves	LTR		LTR		LTR		LTR	
Assumed Moves	LTR		LTR		LTR		LTR	
RT Channelized								
Lane Util	1.000		1.000		1.000		1.000	
Critical Headway, s	5.193		5.193		5.193		5.193	
Entry Flow, veh/h	191		189		405		495	
Cap Entry Lane, veh/h	754		721		923		925	
Entry HV Adj Factor	0.980		0.980		0.958		0.961	
Flow Entry, veh/h	187		185		388		476	
Cap Entry, veh/h	738		707		884		889	
V/C Ratio	0.253		0.262		0.439		0.535	
Control Delay, s/veh	7.8		8.2		9.4		11.3	
LOS	A		A		A		B	
95th \%tile Queue, veh	1		1		2		3	

HCM Unsignalized Intersection Capacity Analysis 5030: Marylicia New \& 26th St Ext

	4		4	\uparrow	\downarrow	\downarrow	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Right Turn Channelized							
Traffic Volume (veh/h)	162	133	147	298	300	221	
Future Volume (veh/h)	162	133	147	298	300	221	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	176	145	160	324	326	240	
Approach Volume (veh/h)	321			484	566		
Crossing Volume (veh/h)	326			176	160		
High Capacity (veh/h)	1072			1207	1222		
High v/c (veh/h)	0.30			0.40	0.46		
Low Capacity (veh/h)	878			999	1013		
Low v/c (veh/h)	0.37			0.48	0.56		
Intersection Summary							
Maximum v/c High			0.46				
Maximum v/c Low			0.56				
Intersection Capacity Utilization			80.2\%		CU Level	Service	D

	\rangle	\rightarrow		7		4	4	\dagger	+	\checkmark	\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Right Turn Channelized												
Traffic Volume (veh/h)	52	104	5	10	121	278	5	25	10	282	15	51
Future Volume (veh/h)	52	104	5	10	121	278	5	25	10	282	15	51
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	57	113	5	11	132	302	5	27	11	307	16	55
Approach Volume (veh/h)		175			445			43			378	
Crossing Volume (veh/h)		334			89			477			148	
High Capacity (veh/h)		1065			1292			951			1233	
High v/c (veh/h)		0.16			0.34			0.05			0.31	
Low Capacity (veh/h)		872			1077			770			1024	
Low v/c (veh/h)		0.20			0.41			0.06			0.37	
Intersection Summary												
Maximum v/c High			0.34									
Maximum v/c Low			0.41									
Intersection Capacity Utilization			68.4\%		CU Level	f Service			C			

Intersection								
Intersection Delay, s/veh	8.2							
Intersection LOS	A							
Approach		EB		WB		NB		SB
Entry Lanes		1		1		1		1
Conflicting Circle Lanes		1		1		1		1
Adj Approach Flow, veh/h		175		445		43		378
Demand Flow Rate, veh/h		183		459		48		387
Vehicles Circulating, veh/h		343		93		490		156
Vehicles Exiting, veh/h		200		444		35		396
Follow-Up Headway, s		3.186		3.186		3.186		3.186
Ped Vol Crossing Leg, \#/h		0		0		0		0
Ped Cap Adj		1.000		1.000		1.000		1.000
Approach Delay, s/veh		7.2		8.7		6.5		8.3
Approach LOS		A		A		A		A
Lane	Left		Left		Left		Left	
Designated Moves	LTR		LTR		LTR		LTR	
Assumed Moves	LTR		LTR		LTR		LTR	
RT Channelized								
Lane Util	1.000		1.000		1.000		1.000	
Critical Headway, s	5.193		5.193		5.193		5.193	
Entry Flow, veh/h	183		459		48		387	
Cap Entry Lane, veh/h	802		1030		692		967	
Entry HV Adj Factor	0.958		0.970		0.902		0.978	
Flow Entry, veh/h	175		445		43		378	
Cap Entry, veh/h	768		999		624		945	
V/C Ratio	0.228		0.446		0.069		0.400	
Control Delay, s/veh	7.2		8.7		6.5		8.3	
LOS	A		A		A		A	
95th \%tile Queue, veh	1		2		0		2	

	\rangle	\rightarrow		7			4	\uparrow	p	\downarrow	\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Right Turn Channelized												
Traffic Volume (veh/h)	7	347	47	84	377	349	30	18	50	288	30	2
Future Volume (veh/h)	7	347	47	84	377	349	30	18	50	288	30	2
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	8	377	51	91	410	379	33	20	54	313	33	2
Approach Volume (veh/h)		436			880			107			348	
Crossing Volume (veh/h)		437			61			698			534	
High Capacity (veh/h)		982			1320			796			908	
High v/c (veh/h)		0.44			0.67			0.13			0.38	
Low Capacity (veh/h)		797			1103			633			732	
Low v/c (veh/h)		0.55			0.80			0.17			0.48	
Intersection Summary												
Maximum v/c High			0.67									
Maximum v/c Low			0.80									
Intersection Capacity Utilization			80.3\%		CU Level	Service			D			

Intersection								
Intersection Delay, s/veh	11.9							
Intersection LOS	B							
Approach		EB		WB		NB		SB
Entry Lanes		1		2		1		1
Conflicting Circle Lanes		1		1		1		1
Adj Approach Flow, veh/h		436		880		107		348
Demand Flow Rate, veh/h		456		910		109		355
Vehicles Circulating, veh/h		446		62		723		557
Vehicles Exiting, veh/h		466		770		179		415
Follow-Up Headway, s		3.186		3.186		3.186		3.186
Ped Vol Crossing Leg, \#/h		0		0		0		0
Ped Cap Adj		1.000		1.000		1.000		1.000
Approach Delay, s/veh		16.8		8.5		9.4		15.1
Approach LOS		C		A		A		C
Lane	Left		Left	Right	Left		Left	
Designated Moves	LTR		LT	R	LTR		LTR	
Assumed Moves	LTR		LT	R	LTR		LTR	
RT Channelized								
Lane Util	1.000		0.575	0.425	1.000		1.000	
Critical Headway, s	5.193		5.193	5.193	5.193		5.193	
Entry Flow, veh/h	456		523	387	109		355	
Cap Entry Lane, veh/h	723		1062	1062	548		647	
Entry HV Adj Factor	0.956		0.957	0.979	0.978		0.981	
Flow Entry, veh/h	436		501	379	107		348	
Cap Entry, veh/h	692		1016	1040	536		635	
V/C Ratio	0.630		0.492	0.364	0.199		0.548	
Control Delay, s/veh	16.8		9.4	7.3	9.4		15.1	
LOS	C		A	A	A		C	
95th \%tile Queue, veh	4		3	2	1		3	

	\rightarrow	7	7		4	7	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Right Turn Channelized							
Traffic Volume (veh/h)	248	452	402	347	495	420	
Future Volume (veh/h)	248	452	402	347	495	420	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	270	491	437	377	538	457	
Approach Volume (veh/h)	761			814	995		
Crossing Volume (veh/h)	437			538	270		
High Capacity (veh/h)	982			905	1121		
High v/c (veh/h)	0.78			0.90	0.89		
Low Capacity (veh/h)	797			730	922		
Low v/c (veh/h)	0.95			1.12	1.08		
Intersection Summary							
Maximum v/c High			0.90				
Maximum v/c Low			1.12				
Intersection Capacity Utilization			72.7\%	ICU Level of Service			C

	4	\rightarrow		7		4	4	\uparrow	p	\checkmark	\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Right Turn Channelized												
Traffic Volume (veh/h)	316	186	180	102	230	54	223	458	96	72	557	404
Future Volume (veh/h)	316	186	180	102	230	54	223	458	96	72	557	404
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	343	202	196	111	250	59	242	498	104	78	605	439
Approach Volume (veh/h)		741			420			844			1122	
Crossing Volume (veh/h)		794			1083			623			603	
High Capacity (veh/h)		737			581			846			859	
High v/c (veh/h)		1.01			0.72			1.00			1.31	
Low Capacity (veh/h)		581			448			677			689	
Low v/c (veh/h)		1.27			0.94			1.25			1.63	
Intersection Summary												
Maximum v/c High			1.31									
Maximum v/c Low			1.63									
Intersection Capacity Utilization			103.8\%		CU Level	f Service			G			

Intersection								
Intersection Delay, s/veh 40.0								
Intersection LOS	E							
Approach		EB		WB		NB		SB
Entry Lanes		2		2		2		2
Conflicting Circle Lanes		2		2		1		1
Adj Approach Flow, veh/h		741		420		844		1122
Demand Flow Rate, veh/h		762		435		876		1163
Vehicles Circulating, veh/h		828		1120		642		622
Vehicles Exiting, veh/h		957		398		948		933
Follow-Up Headway, s		3.186		3.186		3.186		3.186
Ped Vol Crossing Leg, \#h		0		0		0		0
Ped Cap Adj		1.000		1.000		1.000		1.000
Approach Delay, s/veh		37.3		29.3		26.0		56.2
Approach LOS		E		D		D		F
Lane	Left	Right	Left	Right	Left	Right	Left	Right
Designated Moves	LT	R	LT	R	LT	TR	LT	TR
Assumed Moves	LT	R	LT	R	LT	TR	LT	TR
RT Channelized								
Lane Util	0.738	0.262	0.862	0.138	0.470	0.530	0.470	0.530
Critical Headway, s	4.293	4.113	4.293	4.113	5.193	5.193	5.193	5.193
Entry Flow, veh/h	562	200	375	60	412	464	547	616
Cap Entry Lane, veh/h	607	633	488	516	595	595	607	607
Entry HV Adj Factor	0.970	0.980	0.961	0.983	0.963	0.964	0.964	0.965
Flow Entry, veh/h	545	196	361	59	397	447	527	595
Cap Entry, veh/h	589	620	469	507	573	573	585	585
V/C Ratio	0.926	0.316	0.769	0.116	0.693	0.780	0.902	1.015
Control Delay, s/vehLOS	47.2	10.0	32.7	8.6	22.7	28.9	43.2	67.7
	E	B	D	A	C	D	E	F
LOS 95th \%tile Queue, veh	12	1	7	0	5	7	11	16

	4		4	\uparrow	\downarrow	\downarrow	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Right Turn Channelized							
Traffic Volume (veh/h)	340	116	110	438	504	334	
Future Volume (veh/h)	340	116	110	438	504	334	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	370	126	120	476	548	363	
Approach Volume (veh/h)	496			596	911		
Crossing Volume (veh/h)	548			370	120		
High Capacity (veh/h)	898			1035	1261		
High v/c (veh/h)	0.55			0.58	0.72		
Low Capacity (veh/h)	723			845	1049		
Low v/c (veh/h)	0.69			0.71	0.87		
Intersection Summary							
Maximum v/c High			0.72				
Maximum v/c Low			0.87				
Intersection Capacity Utilization			68.8\%		ICU Level of	Service	C

Intersection	
Intersection Delay, s/veh	9.4
Intersection LOS	A

Approach	EB	NB	SB
Entry Lanes	2	2	2
Conflicting Circle Lanes	2	2	2
Adj Approach Flow, veh/h	496	596	911
Demand Flow Rate, veh/h	506	622	945
Vehicles Circulating, veh/h	575	377	122
Vehicles Exiting, veh/h	492	704	877
Follow-Up Headway, s	3.186	3.186	0.186
Ped Vol Crossing Leg, \#/h	0	0	0
Ped Cap Adj	1.000	1.000	1.000
Approach Delay, s/veh	11.2	8.6	8.9
Approach LOS	B	A	A

Lane	Left	Right	Left	Right	Left	Right
Designated Moves	L	TR	LT	TR	LT	TR
Assumed Moves	L	TR	LT	TR	LT	TR
RT Channelized						
Lane Util	0.745	0.255	0.469	0.531	0.470	0.530
Critical Headway, s	4.293	4.113	4.293	4.113	4.293	4.113
Entry Flow, veh/h	377	129	292	330	444	501
Cap Entry Lane, veh/h	734	756	852	868	1031	1037
Entry HV Adj Factor	0.981	0.977	0.960	0.958	0.964	0.963
Flow Entry, veh/h	370	126	280	316	428	483
Cap Entry, veh/h	720	738	817	831	994	999
V/C Ratio	0.514	0.171	0.343	0.380	0.431	0.483
Control Delay, s/veh	12.7	6.7	8.4	8.9	8.5	9.3
LOS	B	A	A	A	A	A
95th \%tile Queue, veh	3	1	2	2	2	3

	\rightarrow	\geqslant	\leftarrow	\uparrow	\dagger
Lane Group	EBT	EBR	WBT	NBT	SBT
Lane Group Flow (vph)	228	21	149	282	370
v/c Ratio	0.60	0.04	0.25	0.40	0.57
Control Delay	20.0	1.2	5.0	12.0	13.8
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	20.0	1.2	5.0	12.0	13.8
Queue Length 50th (m)	11.4	0.0	1.0	12.6	15.9
Queue Length 95th (m)	35.9	1.1	10.8	35.1	46.2
Internal Link Dist (m)	223.6		126.7	770.1	323.4
Turn Bay Length (m)		10.0			
Base Capacity (vph)	674	902	962	1229	1097
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.34	0.02	0.15	0.23	0.34
Intersection Summary					

	\rightarrow	\geqslant	\checkmark	\downarrow	4	7
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Group Flow (vph)	371	152	140	136	98	118
v/c Ratio	0.38	0.09	0.48	0.11	0.24	0.26
Control Delay	17.7	0.1	43.4	11.6	40.1	8.2
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	17.7	0.1	43.4	11.6	40.1	8.2
Queue Length 50th (m)	48.4	0.0	17.5	15.5	19.0	0.0
Queue Length 95th (m)	73.7	0.0	20.5	24.8	34.1	14.7
Internal Link Dist (m)	190.0			351.8	113.5	
Turn Bay Length (m)		40.0	50.0			
Base Capacity (vph)	988	1601	462	1235	402	451
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.38	0.09	0.30	0.11	0.24	0.26

[^12]

Queues
6050: PTH 10/18th St \& Patricia Ave
10-17-2022

	$\stackrel{ }{*}$	\rightarrow	7	\downarrow	\checkmark	4	4	\dagger	\%		\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Group Flow (vph)	186	187	145	38	100	61	82	335	53	73	268	148
v / C Ratio	0.73	0.52	0.34	0.21	0.28	0.16	0.51	0.16	0.05	0.48	0.13	0.09
Control Delay	48.8	35.7	3.4	39.6	40.6	4.5	69.3	11.4	1.3	62.0	14.2	0.1
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	48.8	35.7	3.4	39.6	40.6	4.5	69.3	11.4	1.3	62.0	14.2	0.1
Queue Length 50th (m)	39.5	29.8	0.0	7.6	20.2	0.0	19.9	17.2	0.0	16.7	15.0	0.0
Queue Length 95th (m)	61.1	45.4	2.1	15.8	31.8	6.2	29.9	30.1	2.6	30.8	28.5	0.0
Internal Link Dist (m)		351.8			274.1			180.0			292.9	
Turn Bay Length (m)	75.0			75.0		60.0	90.0		75.0	90.0		75.0
Base Capacity (vph)	510	716	715	368	716	676	313	2045	975	298	2030	1601
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.36	0.26	0.20	0.10	0.14	0.09	0.26	0.16	0.05	0.24	0.13	0.09

[^13]

	4		4	4	\downarrow	\downarrow
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Group Flow (vph)	120	47	54	350	328	123
v/c Ratio	0.60	0.21	0.40	0.13	0.14	0.11
Control Delay	62.6	15.1	61.0	3.4	4.3	0.7
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	62.6	15.1	61.0	3.4	4.3	0.7
Queue Length 50th (m)	27.3	0.0	12.3	8.3	4.6	0.0
Queue Length 95th (m)	44.6	10.6	24.7	14.7	8.4	0.0
Internal Link Dist (m)	91.8			168.8	180.0	
Turn Bay Length (m)		60.0	75.0			75.0
Base Capacity (vph)	551	526	327	2739	2372	1131
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.22	0.09	0.17	0.13	0.14	0.11

[^14]

	\rightarrow		7		4	7
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Group Flow (vph)	265	546	402	370	599	420
v / C Ratio	0.64	0.34	1.02	0.47	0.90	0.49
Control Delay	27.7	0.6	64.7	11.2	40.6	4.3
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	27.7	0.6	64.7	11.2	40.6	4.3
Queue Length 50th (m)	26.3	0.0	~ 47.7	39.9	60.5	0.0
Queue Length 95th (m)	42.1	0.0	\#74.1	21.6	\#130.6	16.7
Internal Link Dist (m)	190.0			351.8	113.5	
Turn Bay Length (m)		40.0				
Base Capacity (vph)	549	1601	395	915	667	860
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.48	0.34	1.02	0.40	0.90	0.49
Intersection Summary						
Volume exceeds capacity, queue is theoretically infinite.Queue shown is maximum after two cycles.						
\# 95th percentile volume exceeds capacity, queue may be longer.						
Queue shown is maximum after two cycles.						

	4		7	7	\checkmark	4	4	4	1		\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Group Flow (vph)	322	192	185	104	240	59	232	477	98	78	585	417
v/c Ratio	0.92	0.30	0.27	0.27	0.37	0.09	0.79	0.32	0.13	0.54	0.51	0.26
Control Delay	65.5	27.1	7.0	27.3	29.0	0.3	67.2	18.0	2.8	66.2	37.0	0.4
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	65.5	27.1	7.0	27.3	29.0	0.3	67.2	18.0	2.8	66.2	37.0	0.4
Queue Length 50th (m)	75.2	28.5	6.9	16.8	40.4	0.0	46.4	40.4	4.1	17.8	60.4	0.0
Queue Length 95th (m)	\#113.3	42.6	10.5	27.8	55.9	0.0	73.4	52.4	6.7	33.5	87.2	0.0
Internal Link Dist (m)		351.8			274.1			180.0			292.9	
Turn Bay Length (m)	75.0			75.0		60.0	90.0		75.0	90.0		75.0
Base Capacity (vph)	420	777	786	470	777	758	344	1509	750	166	1149	1601
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.77	0.25	0.24	0.22	0.31	0.08	0.67	0.32	0.13	0.47	0.51	0.26

Intersection Summary

\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.

	4		4	\dagger	\downarrow	\downarrow
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Group Flow (vph)	340	116	111	465	539	335
v/c Ratio	0.80	0.25	0.58	0.20	0.31	0.34
Control Delay	56.9	7.0	62.9	8.9	6.2	2.3
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	56.9	7.0	62.9	8.9	6.2	2.3
Queue Length 50th (m)	75.7	0.0	25.3	20.6	6.8	0.0
Queue Length 95th (m)	99.1	13.0	42.0	34.2	38.0	15.4
Internal Link Dist (m)	129.4			191.2	180.0	
Turn Bay Length (m)		60.0	75.0			75.0
Base Capacity (vph)	655	660	283	2302	1759	975
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.52	0.18	0.39	0.20	0.31	0.34

[^15]

Intersection								
Intersection Delay, s/veh	18.7							
Intersection LOS	C							
Approach		EB		WB		NB		SB
Entry Lanes		1		1		1		1
Conflicting Circle Lanes		1		1		1		1
Adj Approach Flow, veh/h		159		500		691		322
Demand Flow Rate, veh/h		162		510		705		329
Vehicles Circulating, veh/h		604		393		287		365
Vehicles Exiting, veh/h		90		599		479		538
Follow-Up Headway, s		3.186		3.186		3.186		3.186
Ped Vol Crossing Leg, \#/h		0		0		0		0
Ped Cap Adj		1.000		1.000		1.000		1.000
Approach Delay, s/veh		9.4		17.3		25.9		10.1
Approach LOS		A		C		D		B
Lane	Left		Left		Left		Left	
Designated Moves	LTR		LTR		LTR		LTR	
Assumed Moves	LTR		LTR		LTR		LTR	
RT Channelized								
Lane Util	1.000		1.000		1.000		1.000	
Critical Headway, s	5.193		5.193		5.193		5.193	
Entry Flow, veh/h	162		510		705		329	
Cap Entry Lane, veh/h	618		763		848		784	
Entry HV Adj Factor	0.979		0.980		0.980		0.978	
Flow Entry, veh/h	159		500		691		322	
Cap Entry, veh/h	604		748		831		767	
V/C Ratio	0.262		0.669		0.831		0.419	
Control Delay, s/veh	9.4		17.3		25.9		10.1	
LOS	A		C		D		B	
95th \%tile Queue, veh	1		5		10		2	

Intersection								
Intersection Delay, s/veh	17.7							
Intersection LOS	C							
Approach		EB		WB		NB		SB
Entry Lanes		1		1		1		1
Conflicting Circle Lanes		1		1		1		1
Adj Approach Flow, veh/h		92		462		560		624
Demand Flow Rate, veh/h		94		471		571		637
Vehicles Circulating, veh/h		778		433		237		326
Vehicles Exiting, veh/h		185		375		635		578
Follow-Up Headway, s		3.186		3.186		3.186		3.186
Ped Vol Crossing Leg, \#/h		0		0		0		0
Ped Cap Adj		1.000		1.000		1.000		1.000
Approach Delay, s/veh		9.5		16.8		14.4		22.5
Approach LOS		A		C		B		C
Lane	Left		Left		Left		Left	
Designated Moves	LTR		LTR		LTR		LTR	
Assumed Moves	LTR		LTR		LTR		LTR	
RT Channelized								
Lane Util	1.000		1.000		1.000		1.000	
Critical Headway, s	5.193		5.193		5.193		5.193	
Entry Flow, veh/h	94		471		571		637	
Cap Entry Lane, veh/h	519		733		892		816	
Entry HV Adj Factor	0.981		0.981		0.980		0.980	
Flow Entry, veh/h	92		462		560		624	
Cap Entry, veh/h	509		719		874		799	
V/C Ratio	0.181		0.643		0.640		0.781	
Control Delay, s/veh	9.5		16.8		14.4		22.5	
LOS	A		C		B		C	
95th \%tile Queue, veh	1		5		5		8	

© MORR 2022

[^0]: Stephen Chapman, P.Eng. RSP

[^1]: ${ }^{1}$ City of Brandon staff indicated that the BSD school could alternatively be developed in Zone I. That scenario was considered in the sensitivity analysis in Section 4.9.

[^2]: FIGURE 10: 2052 POST DEVELOPMENT

[^3]: ${ }^{2}$ (U.S. Department of Transportation Federal Highway Administration 2022)

[^4]: ${ }^{3}$ (SWOV Institute for Road Safety Research 2018)

[^5]: Intersection Summary

[^6]: Intersection Summary

[^7]: Intersection Summary

[^8]: Intersection Summary

[^9]: Intersection Summary

[^10]: Intersection Summary

[^11]: Intersection Summary

[^12]: Intersection Summary

[^13]: Intersection Summary

[^14]: Intersection Summary

[^15]: Intersection Summary

